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Introduction

Probability is one of the most important disciplines in all of the sciences. It is also
one of the least well understood.

Probability is especially important in computer science—it arises in virtually
every branch of the field. In algorithm design and game theory, for example, al-
gorithms and strategies that make random choices at certain steps frequently out-
perform deterministic algorithms and strategies. In information theory and signal
processing, an understanding of randomness is critical for filtering out noise and
compressing data. In cryptography and digital rights management, probability is
crucial for achieving security. The list of examples is long.

Given the impact that probability has on computer science, it seems strange that
probability should be so misunderstood by so many. The trouble is that “common-
sense” intuition is demonstrably unreliable when it comes to problems involving
random events. As a consequence, many students develop a fear of probability.
We’ve witnessed many graduate oral exams where a student will solve the most
horrendous calculation, only to then be tripped up by the simplest probability ques-
tion. Even some faculty will start squirming if you ask them a question that starts
“What is the probability that. . . ?”

Our goal in the remaining chapters is to equip you with the tools that will enable
you to solve basic problems involving probability easily and confidently.

Chapter 17 introduces the basic definitions and an elementary 4-step process
that can be used to determine the probability that a specified event occurs. We il-
lustrate the method on two famous problems where your intuition will probably fail
you. The key concepts of conditional probability and independence are introduced,
along with examples of their use, and regrettable misuse, in practice: the probabil-
ity you have a disease given that a diagnostic test says you do, and the probability
that a suspect is guilty given that his blood type matches the blood found at the
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scene of the crime.
Random variables provide a more quantitative way to measure random events,

and we study them in Chapter 19. For example, instead of determining the proba-
bility that it will rain, we may want to determine how much or how long it is likely
to rain. The fundamental concept of the expected value of a random variable is
introduced and some of its key properties are developed.

Chapter 20 examines the probability that a random variable deviates significantly
from its expected value. Probability of deviation provides the theoretical basis for
estimation by sampling which is fundamental in science, engineering, and human
affairs. It is also especially important in engineering practice, where things are
generally fine if they are going as expected, and you would like to be assured that
the probability of an unexpected event is very low.

A final chapter applies the previous probabilistic tools to solve problems involv-
ing more complex random processes. You will see why you will probably never
get very far ahead at the casino and how two Stanford graduate students became
billionaires by combining graph theory and probability theory to design a better
search engine for the web.
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17 Events and Probability Spaces

17.1 Let’s Make a Deal

In the September 9, 1990 issue of Parade magazine, columnist Marilyn vos Savant
responded to this letter:

Suppose you’re on a game show, and you’re given the choice of three
doors. Behind one door is a car, behind the others, goats. You pick a
door, say number 1, and the host, who knows what’s behind the doors,
opens another door, say number 3, which has a goat. He says to you,
“Do you want to pick door number 2?” Is it to your advantage to
switch your choice of doors?

Craig. F. Whitaker
Columbia, MD

The letter describes a situation like one faced by contestants in the 1970’s game
show Let’s Make a Deal, hosted by Monty Hall and Carol Merrill. Marilyn replied
that the contestant should indeed switch. She explained that if the car was behind
either of the two unpicked doors—which is twice as likely as the the car being
behind the picked door—the contestant wins by switching. But she soon received
a torrent of letters, many from mathematicians, telling her that she was wrong. The
problem became known as the Monty Hall Problem and it generated thousands of
hours of heated debate.

This incident highlights a fact about probability: the subject uncovers lots of
examples where ordinary intuition leads to completely wrong conclusions. So until
you’ve studied probabilities enough to have refined your intuition, a way to avoid
errors is to fall back on a rigorous, systematic approach such as the Four Step
Method that we will describe shortly. First, let’s make sure we really understand
the setup for this problem. This is always a good thing to do when you are dealing
with probability.

17.1.1 Clarifying the Problem

Craig’s original letter to Marilyn vos Savant is a bit vague, so we must make some
assumptions in order to have any hope of modeling the game formally. For exam-
ple, we will assume that:
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1. The car is equally likely to be hidden behind each of the three doors.

2. The player is equally likely to pick each of the three doors, regardless of the
car’s location.

3. After the player picks a door, the host must open a different door with a goat
behind it and offer the player the choice of staying with the original door or
switching.

4. If the host has a choice of which door to open, then he is equally likely to
select each of them.

In making these assumptions, we’re reading a lot into Craig Whitaker’s letter. There
are other plausible interpretations that lead to different answers. But let’s accept
these assumptions for now and address the question, “What is the probability that
a player who switches wins the car?”

17.2 The Four Step Method

Every probability problem involves some sort of randomized experiment, process,
or game. And each such problem involves two distinct challenges:

1. How do we model the situation mathematically?

2. How do we solve the resulting mathematical problem?

In this section, we introduce a four step approach to questions of the form, “What
is the probability that. . . ?” In this approach, we build a probabilistic model step
by step, formalizing the original question in terms of that model. Remarkably, this
structured approach provides simple solutions to many famously confusing prob-
lems. For example, as you’ll see, the four step method cuts through the confusion
surrounding the Monty Hall problem like a Ginsu knife.

17.2.1 Step 1: Find the Sample Space

Our first objective is to identify all the possible outcomes of the experiment. A
typical experiment involves several randomly-determined quantities. For example,
the Monty Hall game involves three such quantities:

1. The door concealing the car.

2. The door initially chosen by the player.
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Figure 17.1 The first level in a tree diagram for the Monty Hall Problem. The
branches correspond to the door behind which the car is located.

3. The door that the host opens to reveal a goat.

Every possible combination of these randomly-determined quantities is called an
outcome. The set of all possible outcomes is called the sample space for the exper-
iment.

A tree diagram is a graphical tool that can help us work through the four step
approach when the number of outcomes is not too large or the problem is nicely
structured. In particular, we can use a tree diagram to help understand the sample
space of an experiment. The first randomly-determined quantity in our experiment
is the door concealing the prize. We represent this as a tree with three branches, as
shown in Figure 17.1. In this diagram, the doors are called A, B and C instead of
1, 2, and 3, because we’ll be adding a lot of other numbers to the picture later.

For each possible location of the prize, the player could initially choose any of
the three doors. We represent this in a second layer added to the tree. Then a third
layer represents the possibilities of the final step when the host opens a door to
reveal a goat, as shown in Figure 17.2.

Notice that the third layer reflects the fact that the host has either one choice
or two, depending on the position of the car and the door initially selected by the
player. For example, if the prize is behind door A and the player picks door B, then



“mcs” — 2017/6/5 — 19:42 — page 734 — #742

Chapter 17 Events and Probability Spaces734

car location

A

B

C

A

B

C

A

B

C

A

B

C

player’s
initial
guess

B

A

A

B

A

C

A

C

B

C

C

B

door
revealed

Figure 17.2 The full tree diagram for the Monty Hall Problem. The second level
indicates the door initially chosen by the player. The third level indicates the door
revealed by Monty Hall.
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the host must open door C. However, if the prize is behind door A and the player
picks door A, then the host could open either door B or door C.

Now let’s relate this picture to the terms we introduced earlier: the leaves of the
tree represent outcomes of the experiment, and the set of all leaves represents the
sample space. Thus, for this experiment, the sample space consists of 12 outcomes.
For reference, we’ve labeled each outcome in Figure 17.3 with a triple of doors
indicating:

.door concealing prize; door initially chosen; door opened to reveal a goat/:

In these terms, the sample space is the set

S D
�
.A;A;B/; .A;A; C /; .A;B; C /; .A; C;B/; .B;A; C /; .B;B;A/;

.B;B; C /; .B; C;A/; .C;A;B/; .C;B;A/; .C; C;A/; .C; C;B/

�
The tree diagram has a broader interpretation as well: we can regard the whole
experiment as following a path from the root to a leaf, where the branch taken at
each stage is “randomly” determined. Keep this interpretation in mind; we’ll use it
again later.

17.2.2 Step 2: Define Events of Interest

Our objective is to answer questions of the form “What is the probability that . . . ?”,
where, for example, the missing phrase might be “the player wins by switching,”
“the player initially picked the door concealing the prize,” or “the prize is behind
door C.”

A set of outcomes is called an event. Each of the preceding phrases characterizes
an event. For example, the event Œprize is behind door C � refers to the set:

f.C;A;B/; .C;B;A/; .C; C;A/; .C; C;B/g;

and the event Œprize is behind the door first picked by the player� is:

f.A;A;B/; .A;A; C /; .B;B;A/; .B;B; C /; .C; C;A/; .C; C;B/g:

Here we’re using square brackets around a property of outcomes as a notation for
the event whose outcomes are the ones that satisfy the property.

What we’re really after is the event Œplayer wins by switching�:

f.A;B; C /; .A; C;B/; .B;A; C /; .B; C;A/; .C;A;B/; .C;B;A/g: (17.1)

The outcomes in this event are marked with checks in Figure 17.4.
Notice that exactly half of the outcomes are checked, meaning that the player

wins by switching in half of all outcomes. You might be tempted to conclude that
a player who switches wins with probability 1=2. This is wrong. The reason is that
these outcomes are not all equally likely, as we’ll see shortly.
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Figure 17.3 The tree diagram for the Monty Hall Problem with the outcomes la-
beled for each path from root to leaf. For example, outcome .A;A;B/ corresponds
to the car being behind door A, the player initially choosing door A, and Monty
Hall revealing the goat behind door B .
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Figure 17.4 The tree diagram for the Monty Hall Problem, where the outcomes
where the player wins by switching are denoted with a check mark.
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17.2.3 Step 3: Determine Outcome Probabilities

So far we’ve enumerated all the possible outcomes of the experiment. Now we
must start assessing the likelihood of those outcomes. In particular, the goal of this
step is to assign each outcome a probability, indicating the fraction of the time this
outcome is expected to occur. The sum of all the outcome probabilities must equal
one, reflecting the fact that there always must be an outcome.

Ultimately, outcome probabilities are determined by the phenomenon we’re mod-
eling and thus are not quantities that we can derive mathematically. However, math-
ematics can help us compute the probability of every outcome based on fewer and
more elementary modeling decisions. In particular, we’ll break the task of deter-
mining outcome probabilities into two stages.

Step 3a: Assign Edge Probabilities

First, we record a probability on each edge of the tree diagram. These edge-
probabilities are determined by the assumptions we made at the outset: that the
prize is equally likely to be behind each door, that the player is equally likely to
pick each door, and that the host is equally likely to reveal each goat, if he has a
choice. Notice that when the host has no choice regarding which door to open, the
single branch is assigned probability 1. For example, see Figure 17.5.

Step 3b: Compute Outcome Probabilities

Our next job is to convert edge probabilities into outcome probabilities. This is a
purely mechanical process:

calculate the probability of an outcome by multiplying the edge-probabilities
on the path from the root to that outcome.

For example, the probability of the topmost outcome in Figure 17.5, .A;A;B/, is

1

3
�
1

3
�
1

2
D

1

18
: (17.2)

We’ll examine the official justification for this rule in Section 18.4, but here’s an
easy, intuitive justification: as the steps in an experiment progress randomly along
a path from the root of the tree to a leaf, the probabilities on the edges indicate
how likely the path is to proceed along each branch. For example, a path starting
at the root in our example is equally likely to go down each of the three top-level
branches.

How likely is such a path to arrive at the topmost outcome .A;A;B/? Well,
there is a 1-in-3 chance that a path would follow the A-branch at the top level, a
1-in-3 chance it would continue along the A-branch at the second level, and 1-in-2
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chance it would follow the B-branch at the third level. Thus, there is half of a one
third of a one third chance, of arriving at the .A;A;B/ leaf. That is, the chance is
1=3 �1=3 �1=2 D 1=18—the same product (in reverse order) we arrived at in (17.2).

We have illustrated all of the outcome probabilities in Figure 17.5.
Specifying the probability of each outcome amounts to defining a function that

maps each outcome to a probability. This function is usually called PrŒ��. In these
terms, we’ve just determined that:

PrŒ.A;A;B/� D
1

18
;

PrŒ.A;A; C /� D
1

18
;

PrŒ.A;B; C /� D
1

9
;

etc.

17.2.4 Step 4: Compute Event Probabilities

We now have a probability for each outcome, but we want to determine the proba-
bility of an event. The probability of an event E is denoted by PrŒE�, and it is the
sum of the probabilities of the outcomes in E. For example, the probability of the
[switching wins] event (17.1) is

PrŒswitching wins�

D PrŒ.A;B; C /�C PrŒ.A; C;B/�C PrŒ.B;A; C /�C

PrŒ.B; C;A/�C PrŒ.C;A;B/�C PrŒ.C; B;A/�

D
1

9
C
1

9
C
1

9
C
1

9
C
1

9
C
1

9

D
2

3
:

It seems Marilyn’s answer is correct! A player who switches doors wins the car
with probability 2=3. In contrast, a player who stays with his or her original door
wins with probability 1=3, since staying wins if and only if switching loses.

We’re done with the problem! We didn’t need any appeals to intuition or inge-
nious analogies. In fact, no mathematics more difficult than adding and multiplying
fractions was required. The only hard part was resisting the temptation to leap to
an “intuitively obvious” answer.
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Figure 17.5 The tree diagram for the Monty Hall Problem where edge weights
denote the probability of that branch being taken given that we are at the parent of
that branch. For example, if the car is behind door A, then there is a 1/3 chance that
the player’s initial selection is door B . The rightmost column shows the outcome
probabilities for the Monty Hall Problem. Each outcome probability is simply the
product of the probabilities on the path from the root to the outcome leaf.
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17.2.5 An Alternative Interpretation of the Monty Hall Problem

Was Marilyn really right? Our analysis indicates that she was. But a more accurate
conclusion is that her answer is correct provided we accept her interpretation of the
question. There is an equally plausible interpretation in which Marilyn’s answer
is wrong. Notice that Craig Whitaker’s original letter does not say that the host is
required to reveal a goat and offer the player the option to switch, merely that he
did these things. In fact, on the Let’s Make a Deal show, Monty Hall sometimes
simply opened the door that the contestant picked initially. Therefore, if he wanted
to, Monty could give the option of switching only to contestants who picked the
correct door initially. In this case, switching never works!

17.3 Strange Dice

The four-step method is surprisingly powerful. Let’s get some more practice with
it. Imagine, if you will, the following scenario.

It’s a typical Saturday night. You’re at your favorite pub, contemplating the true
meaning of infinite cardinalities, when a burly-looking biker plops down on the
stool next to you. Just as you are about to get your mind around pow.pow.R//,
biker dude slaps three strange-looking dice on the bar and challenges you to a $100
wager. His rules are simple. Each player selects one die and rolls it once. The
player with the lower value pays the other player $100.

Naturally, you are skeptical, especially after you see that these are not ordinary
dice. Each die has the usual six sides, but opposite sides have the same number on
them, and the numbers on the dice are different, as shown in Figure 17.6.

Biker dude notices your hesitation, so he sweetens his offer: he will pay you
$105 if you roll the higher number, but you only need pay him $100 if he rolls
higher, and he will let you pick a die first, after which he will pick one of the other
two. The sweetened deal sounds persuasive since it gives you a chance to pick what
you think is the best die, so you decide you will play. But which of the dice should
you choose? Die B is appealing because it has a 9, which is a sure winner if it
comes up. Then again, die A has two fairly large numbers, and die C has an 8 and
no really small values.

In the end, you choose die B because it has a 9, and then biker dude selects
die A. Let’s see what the probability is that you will win. (Of course, you probably
should have done this before picking die B in the first place.) Not surprisingly, we
will use the four-step method to compute this probability.
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A B C

Figure 17.6 The strange dice. The number of pips on each concealed face is the
same as the number on the opposite face. For example, when you roll die A, the
probabilities of getting a 2, 6, or 7 are each 1=3.

17.3.1 Die A versus Die B
Step 1: Find the sample space.
The tree diagram for this scenario is shown in Figure 17.7. In particular, the sample
space for this experiment are the nine pairs of values that might be rolled with DieA
and Die B:

For this experiment, the sample space is a set of nine outcomes:

S D f .2; 1/; .2; 5/; .2; 9/; .6; 1/; .6; 5/; .6; 9/; .7; 1/; .7; 5/; .7; 9/ g:

Step 2: Define events of interest.
We are interested in the event that the number on die A is greater than the number
on die B . This event is a set of five outcomes:

f .2; 1/; .6; 1/; .6; 5/; .7; 1/; .7; 5/ g:

These outcomes are marked A in the tree diagram in Figure 17.7.

Step 3: Determine outcome probabilities.
To find outcome probabilities, we first assign probabilities to edges in the tree di-
agram. Each number on each die comes up with probability 1=3, regardless of
the value of the other die. Therefore, we assign all edges probability 1=3. The
probability of an outcome is the product of the probabilities on the correspond-
ing root-to-leaf path, which means that every outcome has probability 1=9. These
probabilities are recorded on the right side of the tree diagram in Figure 17.7.
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Figure 17.7 The tree diagram for one roll of die A versus die B . Die A wins with
probability 5=9.
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Step 4: Compute event probabilities.
The probability of an event is the sum of the probabilities of the outcomes in that
event. In this case, all the outcome probabilities are the same, so we say that the
sample space is uniform. Computing event probabilities for uniform sample spaces
is particularly easy since you just have to compute the number of outcomes in the
event. In particular, for any event E in a uniform sample space S ,

PrŒE� D
jEj

jSj
: (17.3)

In this case, E is the event that die A beats die B , so jEj D 5, jSj D 9, and

PrŒE� D 5=9:

This is bad news for you. Die A beats die B more than half the time and, not
surprisingly, you just lost $100.

Biker dude consoles you on your “bad luck” and, given that he’s a sensitive guy
beneath all that leather, he offers to go double or nothing.1 Given that your wallet
only has $25 in it, this sounds like a good plan. Plus, you figure that choosing die A
will give you the advantage.

So you choose A, and then biker dude chooses C . Can you guess who is more
likely to win? (Hint: it is generally not a good idea to gamble with someone you
don’t know in a bar, especially when you are gambling with strange dice.)

17.3.2 Die A versus Die C

We can construct the tree diagram and outcome probabilities as before. The result
is shown in Figure 17.8, and there is bad news again. Die C will beat die A with
probability 5=9, and you lose once again.

You now owe the biker dude $200 and he asks for his money. You reply that you
need to go to the bathroom.

17.3.3 Die B versus Die C

Being a sensitive guy, biker dude nods understandingly and offers yet another wa-
ger. This time, he’ll let you have die C . He’ll even let you raise the wager to $200
so you can win your money back.

This is too good a deal to pass up. You know that die C is likely to beat die A
and that die A is likely to beat die B , and so die C is surely the best. Whether biker

1Double or nothing is slang for doing another wager after you have lost the first. If you lose again,
you will owe biker dude double what you owed him before. If you win, you will owe him nothing;
in fact, since he should pay you $210 if he loses, you would come out $10 ahead.
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Figure 17.8 The tree diagram for one roll of die C versus dieA. Die C wins with
probability 5=9.
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dude picks A or B , the odds would be in your favor this time. Biker dude must
really be a nice guy.

So you pick C , and then biker dude picks B . Wait—how come you haven’t
caught on yet and worked out the tree diagram before you took this bet? If you do
it now, you’ll see by the same reasoning as before that B beats C with probabil-
ity 5=9. But surely there is a mistake! How is it possible that

C beats A with probability 5=9,

A beats B with probability 5=9,

B beats C with probability 5=9?

The problem is not with the math, but with your intuition. Since A will beat B
more often than not, and B will beat C more often than not, it seems like A ought
to beat C more often than not, that is, the “beats more often” relation ought to
be transitive. But this intuitive idea is simply false: whatever die you pick, biker
dude can pick one of the others and be likely to win. So picking first is actually a
disadvantage, and as a result, you now owe biker dude $400.

Just when you think matters can’t get worse, biker dude offers you one final
wager for $1,000. This time, instead of rolling each die once, you will each roll
your die twice, and your score is the sum of your rolls, and he will even let you
pick your die second, that is, after he picks his. Biker dude chooses die B . Now
you know that die A will beat die B with probability 5=9 on one roll, so, jumping
at this chance to get ahead, you agree to play, and you pick die A. After all, you
figure that since a roll of die A beats a roll of die B more often that not, two rolls
of die A are even more likely to beat two rolls of die B , right?

Wrong! (Did we mention that playing strange gambling games with strangers in
a bar is a bad idea?)

17.3.4 Rolling Twice

If each player rolls twice, the tree diagram will have four levels and 34 D 81

outcomes. This means that it will take a while to write down the entire tree dia-
gram. But it’s easy to write down the first two levels as in Figure 17.9(a) and then
notice that the remaining two levels consist of nine identical copies of the tree in
Figure 17.9(b).

The probability of each outcome is .1=3/4 D 1=81 and so, once again, we have a
uniform probability space. By equation (17.3), this means that the probability that
A wins is the number of outcomes where A beats B divided by 81.

To compute the number of outcomes where A beats B , we observe that the two
rolls of die A result in nine equally likely outcomes in a sample space SA in which
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1st A
roll

2nd A
roll

sum of
A rolls

2

2

7

6

7

7

6
2

2
6

6

7

4

8

9

8

12

13

9

13

14

1st B
roll

2nd B
roll

sum of
B rolls

1

1

9

5

9

9

5
1

1
5

5

9

2

6

10

6

10

14

10

14

18

‹

Figure 17.9 Parts of the tree diagram for die B versus die A where each die is
rolled twice. The first two levels are shown in (a). The last two levels consist of
nine copies of the tree in (b).

the two-roll sums take the values

.4; 8; 8; 9; 9; 12; 13; 13; 14/:

Likewise, two rolls of die B result in nine equally likely outcomes in a sample
space SB in which the two-roll sums take the values

.2; 6; 6; 10; 10; 10; 14; 14; 18/:

We can treat the outcome of rolling both dice twice as a pair .x; y/ 2 SA � SB ,
where A wins iff the sum of the two A-rolls of outcome x is larger the sum of the
two B-rolls of outcome y. If the A-sum is 4, there is only one y with a smaller
B-sum, namely, when the B-sum is 2. If the A-sum is 8, there are three y’s with
a smaller B-sum, namely, when the B-sum is 2 or 6. Continuing the count in this
way, the number of pairs .x; y/ for which the A-sum is larger than the B-sum is

1C 3C 3C 3C 3C 6C 6C 6C 6 D 37:

A similar count shows that there are 42 pairs for which B-sum is larger than the
A-sum, and there are two pairs where the sums are equal, namely, when they both
equal 14. This means that A loses to B with probability 42=81 > 1=2 and ties with
probability 2=81. Die A wins with probability only 37=81.
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How can it be that A is more likely than B to win with one roll, but B is more
likely to win with two rolls? Well, why not? The only reason we’d think otherwise
is our unreliable, untrained intuition. (Even the authors were surprised when they
first learned about this, but at least they didn’t lose $1400 to biker dude.) In fact,
the die strength reverses no matter which two die we picked. So for one roll,

A � B � C � A;

but for two rolls,
A � B � C � A;

where we have used the symbols � and � to denote which die is more likely to
result in the larger value.

The weird behavior of the three strange dice above generalizes in a remarkable
way: there are arbitrarily large sets of dice which will beat each other in any desired
pattern according to how many times the dice are rolled.2

17.4 The Birthday Principle

There are 95 students in a class. What is the probability that some birthday is
shared by two people? Comparing 95 students to the 365 possible birthdays, you
might guess the probability lies somewhere around 1=4—but you’d be wrong: the
probability that there will be two people in the class with matching birthdays is
actually more than 0:9999.

To work this out, we’ll assume that the probability that a randomly chosen stu-
dent has a given birthday is 1=d . We’ll also assume that a class is composed of n
randomly and independently selected students. Of course d D 365 and n D 95

in this case, but we’re interested in working things out in general. These random-
ness assumptions are not really true, since more babies are born at certain times
of year, and students’ class selections are typically not independent of each other,
but simplifying in this way gives us a start on analyzing the problem. More impor-
tantly, these assumptions are justifiable in important computer science applications
of birthday matching. For example, birthday matching is a good model for colli-
sions between items randomly inserted into a hash table. So we won’t worry about
things like spring procreation preferences that make January birthdays more com-
mon, or about twins’ preferences to take classes together (or not).

2 TBA - Reference Ron Graham paper.
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17.4.1 Exact Formula for Match Probability

There are dn sequences of n birthdays, and under our assumptions, these are
equally likely. There are d.d � 1/.d � 2/ � � � .d � .n � 1// length n sequences of
distinct birthdays. That means the probability that everyone has a different birthday
is:

d.d � 1/.d � 2/ � � � .d � .n � 1//

dn

D
d

d
�
d � 1

d
�
d � 2

d
� � �
d � .n � 1/

d
(17.4)

D

�
1 �

0

d

��
1 �

1

d

��
1 �

2

d

�
� � �

�
1 �

n � 1

d

�
(17.5)

Now we simplify (17.5) using the fact that 1 � x < e�x for all x > 0. This
follows by truncating the Taylor series e�x D 1 � x C x2=2Š � x3=3ŠC � � � . The
approximation e�x � 1 � x is pretty accurate when x is small.

�
1 �

0

d

��
1 �

1

d

��
1 �

2

d

�
� � �

�
1 �

n � 1

d

�
< e0 � e�1=d � e�2=d � � � e�.n�1/=d (17.6)

D e
�

�Pn�1
iD1 i=d

�
D e�.n.n�1/=2d/: (17.7)

For n D 95 and d D 365, the value of (17.7) is less than 1=200; 000, which
means the probability of having some pair of matching birthdays actually is more
than 1 � 1=200; 000 > 0:99999. So it would be pretty astonishing if there were no
pair of students in the class with matching birthdays.

For d � n2=2, the probability of no match turns out to be asymptotically equal
to the upper bound (17.7). For d D n2=2 in particular, the probability of no match
is asymptotically equal to 1=e. This leads to a rule of thumb which is useful in
many contexts in computer science:

The Birthday Principle
If there are d days in a year and

p
2d people in a room, then the probability that

two share a birthday is about 1 � 1=e � 0:632.
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For example, the Birthday Principle says that if you have
p
2 � 365 � 27 people

in a room, then the probability that two share a birthday is about 0:632. The actual
probability is about 0:626, so the approximation is quite good.

Among other applications, it implies that to use a hash function that maps n
items into a hash table of size d , you can expect many collisions if n2 is more than
a small fraction of d . The Birthday Principle also famously comes into play as the
basis of “birthday attacks” that crack certain cryptographic systems.

17.5 Set Theory and Probability

Let’s abstract what we’ve just done into a general mathematical definition of sample
spaces and probability.

17.5.1 Probability Spaces

Definition 17.5.1. A countable sample space S is a nonempty countable set.3 An
element ! 2 S is called an outcome. A subset of S is called an event.

Definition 17.5.2. A probability function on a sample space S is a total function
Pr W S ! R such that

� PrŒ!� � 0 for all ! 2 S, and

�
P
!2S PrŒ!� D 1.

A sample space together with a probability function is called a probability space.
For any event E � S, the probability of E is defined to be the sum of the probabil-
ities of the outcomes in E:

PrŒE� WWD
X
!2E

PrŒ!�:

In the previous examples there were only finitely many possible outcomes, but
we’ll quickly come to examples that have a countably infinite number of outcomes.

The study of probability is closely tied to set theory because any set can be a
sample space and any subset can be an event. General probability theory deals
with uncountable sets like the set of real numbers, but we won’t need these, and
sticking to countable sets lets us define the probability of events using sums instead
of integrals. It also lets us avoid some distracting technical problems in set theory
like the Banach-Tarski “paradox” mentioned in Chapter 8.

3Yes, sample spaces can be infinite. If you did not read Chapter 8, don’t worry—countable just
means that you can list the elements of the sample space as !0, !1, !2, . . . .
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17.5.2 Probability Rules from Set Theory

Most of the rules and identities that we have developed for finite sets extend very
naturally to probability.

An immediate consequence of the definition of event probability is that for dis-
joint events E and F ,

PrŒE [ F � D PrŒE�C PrŒF �:

This generalizes to a countable number of events:

Rule 17.5.3 (Sum Rule). If E0; E1; : : : ; En; : : : are pairwise disjoint events, then

Pr

" [
n2N

En

#
D

X
n2N

PrŒEn�:

The Sum Rule lets us analyze a complicated event by breaking it down into
simpler cases. For example, if the probability that a randomly chosen MIT student
is native to the United States is 60%, to Canada is 5%, and to Mexico is 5%, then
the probability that a random MIT student is native to one of these three countries
is 70%.

Another consequence of the Sum Rule is that PrŒA�C PrŒA� D 1, which follows
because PrŒS� D 1 and S is the union of the disjoint sets A and A. This equation
often comes up in the form:

PrŒA� D 1 � PrŒA�: (Complement Rule)

Sometimes the easiest way to compute the probability of an event is to compute the
probability of its complement and then apply this formula.

Some further basic facts about probability parallel facts about cardinalities of
finite sets. In particular:

PrŒB � A� D PrŒB� � PrŒA \ B�, (Difference Rule)
PrŒA [ B� D PrŒA�C PrŒB� � PrŒA \ B�, (Inclusion-Exclusion)
PrŒA [ B� � PrŒA�C PrŒB�, (Boole’s Inequality)
If A � B , then PrŒA� � PrŒB�. (Monotonicity Rule)

The Difference Rule follows from the Sum Rule because B is the union of the
disjoint sets B � A and A \ B . Inclusion-Exclusion then follows from the Sum
and Difference Rules, because A [ B is the union of the disjoint sets A and B �
A. Boole’s inequality is an immediate consequence of Inclusion-Exclusion since
probabilities are nonnegative. Monotonicity follows from the definition of event
probability and the fact that outcome probabilities are nonnegative.
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The two-event Inclusion-Exclusion equation above generalizes to any finite set
of events in the same way as the corresponding Inclusion-Exclusion rule for n
sets. Boole’s inequality also generalizes to both finite and countably infinite sets of
events:

Rule 17.5.4 (Union Bound).

PrŒE1 [ � � � [En [ � � � � � PrŒE1�C � � � C PrŒEn�C � � � : (17.8)

The Union Bound is useful in many calculations. For example, suppose thatEi is
the event that the i -th critical component among n components in a spacecraft fails.
Then E1[ � � � [En is the event that some critical component fails. If

Pn
iD1 PrŒEi �

is small, then the Union Bound can provide a reassuringly small upper bound on
this overall probability of critical failure.

17.5.3 Uniform Probability Spaces

Definition 17.5.5. A finite probability space S is said to be uniform if PrŒ!� is the
same for every outcome ! 2 S.

As we saw in the strange dice problem, uniform sample spaces are particularly
easy to work with. That’s because for any event E � S,

PrŒE� D
jEj

jSj
: (17.9)

This means that once we know the cardinality of E and S, we can immediately
obtain PrŒE�. That’s great news because we developed lots of tools for computing
the cardinality of a set in Part III.

For example, suppose that you select five cards at random from a standard deck
of 52 cards. What is the probability of having a full house? Normally, this question
would take some effort to answer. But from the analysis in Section 15.7.2, we know
that

jSj D
 
52

5

!
and

jEj D 13 �

 
4

3

!
� 12 �

 
4

2

!
whereE is the event that we have a full house. Since every five-card hand is equally
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Figure 17.10 The tree diagram for the game where players take turns flipping a
fair coin. The first player to flip heads wins.

likely, we can apply equation (17.9) to find that

PrŒE� D
13 � 12 �

�
4
3

�
�
�
4
2

��
52
5

�
D
13 � 12 � 4 � 6 � 5 � 4 � 3 � 2

52 � 51 � 50 � 49 � 48
D

18

12495

�
1

694
:

17.5.4 Infinite Probability Spaces

Infinite probability spaces are fairly common. For example, two players take turns
flipping a fair coin. Whoever flips heads first is declared the winner. What is the
probability that the first player wins? A tree diagram for this problem is shown in
Figure 17.10.

The event that the first player wins contains an infinite number of outcomes, but
we can still sum their probabilities:

PrŒfirst player wins� D
1

2
C
1

8
C

1

32
C

1

128
C � � �

D
1

2

1X
nD0

�
1

4

�n
D
1

2

�
1

1 � 1=4

�
D
2

3
:
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Similarly, we can compute the probability that the second player wins:

PrŒsecond player wins� D
1

4
C

1

16
C

1

64
C

1

256
C � � � D

1

3
:

In this case, the sample space is the infinite set

S WWD fTnH j n 2 N g;

where Tn stands for a length n string of T’s. The probability function is

PrŒTnH� WWD
1

2nC1
:

To verify that this is a probability space, we just have to check that all the prob-
abilities are nonnegative and that they sum to 1. The given probabilities are all
nonnegative, and applying the formula for the sum of a geometric series, we find
that X

n2N

PrŒTnH� D
X
n2N

1

2nC1
D 1:

Notice that this model does not have an outcome corresponding to the possi-
bility that both players keep flipping tails forever. (In the diagram, flipping for-
ever corresponds to following the infinite path in the tree without ever reaching
a leaf/outcome.) If leaving this possibility out of the model bothers you, you’re
welcome to fix it by adding another outcome !forever to indicate that that’s what
happened. Of course since the probabililities of the other outcomes already sum to
1, you have to define the probability of !forever to be 0. Now outcomes with prob-
ability zero will have no impact on our calculations, so there’s no harm in adding
it in if it makes you happier. On the other hand, in countable probability spaces
it isn’t necessary to have outcomes with probability zero, and we will generally
ignore them.

17.6 References
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Problems for Section 17.2

Practice Problems

Problem 17.1.
Let B be the number of heads that come up on 2n independent tosses of a fair coin.

(a) PrŒB D n� is asymptotically equal to one of the expressions given below.
Explain which one.

1. 1p
2�n

2. 2p
�n

3. 1p
�n

4.
q

2
�n

Exam Problems

Problem 17.2. (a) What’s the probability that 0 doesn’t appear among k digits
chosen independently and uniformly at random?

(b) A box contains 90 good and 10 defective screws. What’s the probability that
if we pick 10 screws from the box, none will be defective?

(c) First one digit is chosen uniformly at random from f1; 2; 3; 4; 5g and is re-
moved from the set; then a second digit is chosen uniformly at random from the
remaining digits. What is the probability that an odd digit is picked the second
time?

(d) Suppose that you randomly permute the digits 1; 2; � � � ; n, that is, you select
a permutation uniformly at random. What is the probability the digit k ends up in
the i th position after the permutation?

(e) A fair coin is flipped n times. What’s the probability that all the heads occur
at the end of the sequence? (If no heads occur, then “all the heads are at the end of
the sequence” is vacuously true.)

Class Problems

Problem 17.3.
The New York Yankees and the Boston Red Sox are playing a two-out-of-three
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series. In other words, they play until one team has won two games. Then that
team is declared the overall winner and the series ends. Assume that the Red Sox
win each game with probability 3=5, regardless of the outcomes of previous games.

Answer the questions below using the four step method. You can use the same
tree diagram for all three problems.

(a) What is the probability that a total of 3 games are played?

(b) What is the probability that the winner of the series loses the first game?

(c) What is the probability that the correct team wins the series?

Problem 17.4.
To determine which of two people gets a prize, a coin is flipped twice. If the flips
are a Head and then a Tail, the first player wins. If the flips are a Tail and then a
Head, the second player wins. However, if both coins land the same way, the flips
don’t count and the whole process starts over.

Assume that on each flip, a Head comes up with probability p, regardless of
what happened on other flips. Use the four step method to find a simple formula
for the probability that the first player wins. What is the probability that neither
player wins?

Hint: The tree diagram and sample space are infinite, so you’re not going to
finish drawing the tree. Try drawing only enough to see a pattern. Summing all
the winning outcome probabilities directly is cumbersome. However, a neat trick
solves this problem—and many others. Let s be the sum of all winning outcome
probabilities in the whole tree. Notice that you can write the sum of all the winning
probabilities in certain subtrees as a function of s. Use this observation to write an
equation in s and then solve.

Homework Problems

Problem 17.5.
Let’s see what happens when Let’s Make a Deal is played with four doors. A prize
is hidden behind one of the four doors. Then the contestant picks a door. Next, the
host opens an unpicked door that has no prize behind it. The contestant is allowed
to stick with their original door or to switch to one of the two unopened, unpicked
doors. The contestant wins if their final choice is the door hiding the prize.

Let’s make the same assumptions as in the original problem:

1. The prize is equally likely to be behind each door.
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2. The contestant is equally likely to pick each door initially, regardless of the
prize’s location.

3. The host is equally likely to reveal each door that does not conceal the prize
and was not selected by the player.

Use The Four Step Method to find the following probabilities. The tree diagram
may become awkwardly large, in which case just draw enough of it to make its
structure clear.

(a) Contestant Stu, a sanitation engineer from Trenton, New Jersey, stays with his
original door. What is the probability that Stu wins the prize?

(b) Contestant Zelda, an alien abduction researcher from Helena, Montana, switches
to one of the remaining two doors with equal probability. What is the probability
that Zelda wins the prize?

Now let’s revise our assumptions about how contestants choose doors. Say the
doors are labeled A, B, C, and D. Suppose that Carol always opens the earliest door
possible (the door whose label is earliest in the alphabet) with the restriction that
she can neither reveal the prize nor open the door that the player picked.

This gives contestant Mergatroid—an engineering student from Cambridge, MA—
just a little more information about the location of the prize. Suppose that Merga-
troid always switches to the earliest door, excluding his initial pick and the one
Carol opened.

(c) What is the probability that Mergatroid wins the prize?

Problem 17.6.
There were n Immortal Warriors born into our world, but in the end there can be
only one. The Immortals’ original plan was to stalk the world for centuries, dueling
one another with ancient swords in dramatic landscapes until only one survivor
remained. However, after a thought-provoking discussion probability, they opt to
give the following protocol a try:

(i) The Immortals forge a coin that comes up heads with probability p.

(ii) Each Immortal flips the coin once.

(iii) If exactly one Immortal flips heads, then they are declared The One. Other-
wise, the protocol is declared a failure, and they all go back to hacking each
other up with swords.
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One of the Immortals (Kurgan from the Russian steppe) argues that as n grows
large, the probability that this protocol succeeds must tend to zero. Another (McLeod
from the Scottish highlands) argues that this need not be the case, provided p is
chosen carefully.

(a) A natural sample space to use to model this problem is fH;T gn of length-n
sequences of H and T’s, where the successive H’s and T’s in an outcome correspond
to the Head or Tail flipped on each one of the n successive flips. Explain how a tree
diagram approach leads to assigning a probability to each outcome that depends
only on p; n and the number h of H’s in the outcome.

(b) What is the probability that the experiment succeeds as a function of p and n?

(c) How should p, the bias of the coin, be chosen in order to maximize the prob-
ability that the experiment succeeds?

(d) What is the probability of success if p is chosen in this way? What quantity
does this approach when n, the number of Immortal Warriors, grows large?

Problem 17.7.
We play a game with a deck of 52 regular playing cards, of which 26 are red and
26 are black. I randomly shuffle the cards and place the deck face down on a table.
You have the option of “taking” or “skipping” the top card. If you skip the top card,
then that card is revealed and we continue playing with the remaining deck. If you
take the top card, then the game ends; you win if the card you took was revealed
to be black, and you lose if it was red. If we get to a point where there is only one
card left in the deck, you must take it. Prove that you have no better strategy than
to take the top card—which means your probability of winning is 1/2.

Hint: Prove by induction the more general claim that for a randomly shuffled
deck of n cards that are red or black—not necessarily with the same number of red
cards and black cards—there is no better strategy than taking the top card.

Problems for Section 17.5

Class Problems

Problem 17.8.
Suppose there is a system with n components, and we know from past experience
that any particular component will fail in a given year with probability p. That is,
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letting Fi be the event that the i th component fails within one year, we have

PrŒFi � D p

for 1 � i � n. The system will fail if any one of its components fails. What can we
say about the probability that the system will fail within one year?

Let F be the event that the system fails within one year. Without any additional
assumptions, we can’t get an exact answer for PrŒF �. However, we can give useful
upper and lower bounds, namely,

p � PrŒF � � np: (17.10)

We may as well assume p < 1=n, since the upper bound is trivial otherwise. For
example, if n D 100 and p D 10�5, we conclude that there is at most one chance
in 1000 of system failure within a year and at least one chance in 100,000.

Let’s model this situation with the sample space S WWD pow.Œ1::n�/ whose out-
comes are subsets of positive integers � n, where s 2 S corresponds to the indices
of exactly those components that fail within one year. For example, f2; 5g is the
outcome that the second and fifth components failed within a year and none of the
other components failed. So the outcome that the system did not fail corresponds
to the empty set ;.
(a) Show that the probability that the system fails could be as small as p by de-

scribing appropriate probabilities for the outcomes. Make sure to verify that the
sum of your outcome probabilities is 1.

(b) Show that the probability that the system fails could actually be as large as np
by describing appropriate probabilities for the outcomes. Make sure to verify that
the sum of your outcome probabilities is 1.

(c) Prove inequality (17.10).

Problem 17.9.
Here are some handy rules for reasoning about probabilities that all follow directly
from the Disjoint Sum Rule. Prove them.

PrŒA � B� D PrŒA� � PrŒA \ B� (Difference Rule)

PrŒA� D 1 � PrŒA� (Complement Rule)

PrŒA [ B� D PrŒA�C PrŒB� � PrŒA \ B� (Inclusion-Exclusion)

PrŒA [ B� � PrŒA�C PrŒB� (2-event Union Bound)

A � B IMPLIES PrŒA� � PrŒB� (Monotonicity)
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Homework Problems

Problem 17.10.
Prove the following probabilistic inequality, referred to as the Union Bound.

Let A1; A2; : : : ; An; : : : be events. Then

Pr

" [
n2N

An

#
�

X
n2N

PrŒAn�:

Hint: Replace the An’s by pairwise disjoint events and use the Sum Rule.

Problem 17.11.
The results of a round robin tournament in which every two people play each other
and one of them wins can be modelled a tournament digraph—a digraph with ex-
actly one edge between each pair of distinct vertices, but we’ll continue to use the
language of players beating each other.

An n-player tournament is k-neutral for some k 2 Œ0; n/, when, for every set of
k players, there is another player who beats them all. For example, being 1-neutral
is the same as not having a “best” player who beats everyone else.

This problem shows that for any fixed k, if n is large enough, there will be a
k-neutral tournament of n players. We will do this by reformulating the question in
terms of probabilities. In particular, for any fixed n, we assign probabilities to each
n-vertex tournament digraph by choosing a direction for the edge between any two
vertices, independently and with equal probability for each edge.
(a) For any set S of k players, let BS be the event that no contestant beats every-

one in S . Express PrŒBS � in terms of n and k.

(b) Let Qk be the event equal to the set of n-vertex tournament digraphs that are
not k-neutral. Prove that

PrŒQk� �

 
n

k

!
˛n�k;

where ˛ WWD 1 � .1=2/k .

Hint: Let S range over the size-k subsets of players, so

Qk D
[
S

BS :

Use Boole’s inequality.

(c) Conclude that if n is enough larger than k, then PrŒQk� < 1.
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(d) Explain why the previous result implies that for every integer k, there is an
n-player k-neutral tournament.

Homework Problems

Problem 17.12.
Suppose you repeatedly flip a fair coin until three consecutive flips match the pat-
tern HHT or the pattern TTH occurs. What is the probability you will see HHT
first? Define a suitable probability space that models the coin flipping and use it to
explain your answer.

Hint: Symmetry between Heads and Tails.
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18 Conditional Probability

18.1 Monty Hall Confusion

Remember how we said that the Monty Hall problem confused even professional
mathematicians? Based on the work we did with tree diagrams, this may seem
surprising—the conclusion we reached followed routinely and logically. How could
this problem be so confusing to so many people?

Well, one flawed argument goes as follows: let’s say the contestant picks door
A. And suppose that Carol, Monty’s assistant, opens door B and shows us a goat.
Let’s use the tree diagram 17.3 from Chapter 17 to capture this situation. There are
exactly three outcomes where contestant chooses doorA, and there is a goat behind
door B:

.A;A;B/; .A;A; C /; .C;A;B/: (18.1)

These outcomes have respective probabilities 1/18, 1/18, 1/9.
Among those outcomes, switching doors wins only on the last outcome .C;A;B/.

The other two outcomes together have the same 1/9 probability as the last one So
in this situation, the probability that we win by switching is the same as the proba-
bility that we lose. In other words, in this situation, switching isn’t any better than
sticking!

Something has gone wrong here, since we know that the actual probability of
winning by switching in 2/3. The mistaken conclusion that sticking or switching
are equally good strategies comes from a common blunder in reasoning about how
probabilities change given some information about what happened. We have asked
for the probability that one event, [win by switching], happens, given that another
event, [pick A AND goat at B], happens. We use the notation

Pr
�
[win by switching] j [pick A AND goat at B]

�
for this probability which, by the reasoning above, equals 1/2.

18.1.1 Behind the Curtain

A “given” condition is essentially an instruction to focus on only some of the possi-
ble outcomes. Formally, we’re defining a new sample space consisting only of some
of the outcomes. In this particular example, we’re given that the player chooses
door A and that there is a goat behind B. Our new sample space therefore consists
solely of the three outcomes listed in (18.1). In the opening of Section 18.1, we
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calculated the conditional probability of winning by switching given that one of
these outcome happened, by weighing the 1/9 probability of the win-by-switching
outcome .C;A;B/ against the 1=18C1=18C1=9 probability of the three outcomes
in the new sample space.

Pr
�
[win by switching] j [pick A AND goat at B]

�
D Pr

�
.C;A;B/ j f.C;A;B/; .A;A;B/; .A;A; C /g

�
C

PrŒ.C;A;B/�
PrŒf.C;A;B/; .A;A;B/; .A;A; C /g�

D
1=9

1=18C 1=18C 1=9
D
1

2
:

There is nothing wrong with this calculation. So how come it leads to an incorrect
conclusion about whether to stick or switch? The answer is that this was the wrong
thing to calculate, as we’ll explain in the next section.

18.2 Definition and Notation

The expression Pr
�
X j Y

�
denotes the probability of event X , given that event

Y happens. In the example above, event X is the event of winning on a switch,
and event Y is the event that a goat is behind door B and the contestant chose
door A. We calculated Pr

�
X j Y

�
using a formula which serves as the definition

of conditional probability:

Definition 18.2.1. Let X and Y be events where Y has nonzero probability. Then

Pr
�
X j Y

�
WWD

PrŒX \ Y �
PrŒY �

:

The conditional probability Pr
�
X j Y

�
is undefined when the probability of

event Y is zero. To avoid cluttering up statements with uninteresting hypotheses
that conditioning events like Y have nonzero probability, we will make an implicit
assumption from now on that all such events have nonzero probability.

Pure probability is often counterintuitive, but conditional probability can be even
worse. Conditioning can subtly alter probabilities and produce unexpected results
in randomized algorithms and computer systems as well as in betting games. But
Definition 18.2.1 is very simple and causes no trouble—provided it is properly
applied.
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18.2.1 What went wrong

So if everything in the opening Section 18.1 is mathematically sound, why does it
seem to contradict the results that we established in Chapter 17? The problem is a
common one: we chose the wrong condition. In our initial description of the sce-
nario, we learned the location of the goat when Carol opened door B. But when we
defined our condition as “the contestant opens A and the goat is behind B,” we in-
cluded the outcome .A;A; C / in which Carol opens door C! The correct conditional
probability should have been “what are the odds of winning by switching given the
contestant chooses door A and Carol opens door B.” By choosing a condition that
did not reflect everything known. we inadvertently included an extraneous outcome
in our calculation. With the correct conditioning, we still win by switching 1/9 of
the time, but the smaller set of known outcomes has smaller total probability:

PrŒf.A;A;B/; .C;A;B/g� D
1

18
C
1

9
D

3

18
:

The conditional probability would then be:

Pr
�
[win by switching] j [pick A AND Carol opens B]

�
D Pr

�
.C;A;B/ j f.C;A;B/; .A;A;B/g

�
C

PrŒ.C;A;B/�
PrŒf.C;A;B/; .A;A;B/g�

D
1=9

1=9C 1=18
D
2

3
;

which is exactly what we already deduced from the tree diagram 17.2 in Sec-
tion 17.2.
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The O. J. Simpson Trial

In an opinion article in the New York Times, Steven Strogatz points to the O. J.
Simpson trial as an example of poor choice of conditions. O. J. Simpson was
a retired football player who was accused, and later acquitted, of the murder of
his wife, Nicole Brown Simpson. The trial was widely publicized and called
the “trial of the century.” Racial tensions, allegations of police misconduct, and
new-at-the-time DNA evidence captured the public’s attention. But Strogatz, cit-
ing mathematician and author I.J. Good, focuses on a less well-known aspect of
the case: whether O. J.’s history of abuse towards his wife was admissible into
evidence.

The prosecution argued that abuse is often a precursor to murder, pointing to
statistics indicating that an abuser was as much as ten times more likely to commit
murder than was a random individual. The defense, however, countered with
statistics indicating that the odds of an abusive husband murdering his wife were
“infinitesimal,” roughly 1 in 2500. Based on those numbers, the actual relevance
of a history of abuse to a murder case would appear limited at best. According
to the defense, introducing that history would prejudice the jury against Simpson
but would lack any probitive value, so the discussion should be barred.

In other words, both the defense and the prosecution were arguing conditional
probability, specifically the likelihood that a woman will be murdered by her
husband, given that her husband abuses her. But both defense and prosecution
omitted a vital piece of data from their calculations: Nicole Brown Simpson was
murdered. Strogatz points out that based on the defense’s numbers and the crime
statistics of the time, the probability that a woman was murdered by her abuser,
given that she was abused and murdered, is around 80%.

Strogatz’s article goes into more detail about the calculations behind that 80%
figure. But the issue we want to illustrate is that conditional probability is used
and misused all the time, and even experts under public scrutiny make mistakes.

18.3 The Four-Step Method for Conditional Probability

In a best-of-three tournament, the local C-league hockey team wins the first game
with probability 1=2. In subsequent games, their probability of winning is deter-
mined by the outcome of the previous game. If the local team won the previous
game, then they are invigorated by victory and win the current game with proba-
bility 2=3. If they lost the previous game, then they are demoralized by defeat and
win the current game with probability only 1=3. What is the probability that the
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local team wins the tournament, given that they win the first game?
This is a question about a conditional probability. Let A be the event that the

local team wins the tournament, and let B be the event that they win the first game.
Our goal is then to determine the conditional probability Pr

�
A j B

�
.

We can tackle conditional probability questions just like ordinary probability
problems: using a tree diagram and the four step method. A complete tree diagram
is shown in Figure 18.1.

W

W

W

L

L

L

W

L

W

L

1=2

1=2

2=3

1=3

2=3

1=3

1=3

2=3

1=3

2=3

WW

WLW

WLL

LWW

LWL

LL













1=3

1=18

1=9

1=9

1=18

1=3

game 1 game 2 game 3 outcome event A:
win the
series

event B:
win

game 1

outcome
probability

Figure 18.1 The tree diagram for computing the probability that the local team
wins two out of three games given that they won the first game.

Step 1: Find the Sample Space
Each internal vertex in the tree diagram has two children, one corresponding to a
win for the local team (labeled W ) and one corresponding to a loss (labeled L).
The complete sample space is:

S D fWW; WLW; WLL; LWW; LWL; LLg:

Step 2: Define Events of Interest
The event that the local team wins the whole tournament is:

T D fWW; WLW; LWW g:

And the event that the local team wins the first game is:

F D fWW; WLW; WLLg:
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The outcomes in these events are indicated with check marks in the tree diagram in
Figure 18.1.

Step 3: Determine Outcome Probabilities
Next, we must assign a probability to each outcome. We begin by labeling edges as
specified in the problem statement. Specifically, the local team has a 1=2 chance of
winning the first game, so the two edges leaving the root are each assigned probabil-
ity 1=2. Other edges are labeled 1=3 or 2=3 based on the outcome of the preceding
game. We then find the probability of each outcome by multiplying all probabilities
along the corresponding root-to-leaf path. For example, the probability of outcome
WLL is:

1

2
�
1

3
�
2

3
D
1

9
:

Step 4: Compute Event Probabilities
We can now compute the probability that the local team wins the tournament, given
that they win the first game:

Pr
�
A j B

�
D

PrŒA \ B�
PrŒB�

D
PrŒfWW;WLW g�

PrŒfWW;WLW;WLLg�

D
1=3C 1=18

1=3C 1=18C 1=9

D
7

9
:

We’re done! If the local team wins the first game, then they win the whole tourna-
ment with probability 7=9.

18.4 Why Tree Diagrams Work

We’ve now settled into a routine of solving probability problems using tree dia-
grams, but we have not really explained why they work. The explanation is that the
probabilities that we’ve been recording on the edges of tree diagrams are actually
conditional probabilities.

For example, look at the uppermost path in the tree diagram for the hockey team
problem, which corresponds to the outcome WW . The first edge is labeled 1=2,
which is the probability that the local team wins the first game. The second edge
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is labeled 2=3, which is the probability that the local team wins the second game,
given that they won the first—a conditional probability! More generally, on each
edge of a tree diagram, we record the probability that the experiment proceeds
along that path, given that it reaches the parent vertex.

So we’ve been using conditional probabilities all along. For example, we con-
cluded that:

PrŒW W � D
1

2
�
2

3
D
1

3
:

Why is this correct?
The answer goes back to Definition 18.2.1 of conditional probability which could

be written in a form called the Product Rule for conditional probabilities:

Rule (Conditional Probability Product Rule: 2 Events).

PrŒE1 \E2� D PrŒE1� � Pr
�
E2 j E1

�
:

Multiplying edge probabilities in a tree diagram amounts to evaluating the right
side of this equation. For example:

PrŒwin first game \ win second game�

D PrŒwin first game� � Pr
�
win second game j win first game

�
D
1

2
�
2

3
:

So the Conditional Probability Product Rule is the formal justification for multiply-
ing edge probabilities to get outcome probabilities.

To justify multiplying edge probabilities along a path of length three, we need a
rule for three events:

Rule (Conditional Probability Product Rule: 3 Events).

PrŒE1 \E2 \E3� D PrŒE1� � Pr
�
E2 j E1

�
� Pr

�
E3 j E1 \E2

�
:

An n-event version of the Rule is given in Problem 18.1, but its form should be
clear from the three event version.

18.4.1 Probability of Size-k Subsets

As a simple application of the product rule for conditional probabilities, we can use
the rule to calculate the number of size-k subsets of the integers Œ1::n�. Of course
we already know this number is

�
n
k

�
, but now the rule will give us a new derivation

of the formula for
�
n
k

�
.
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Let’s pick some size-k subset S � Œ1::n� as a target. Suppose we choose a size-k
subset at random, with all subsets of Œ1::n� equally likely to be chosen, and let p be
the probability that our randomly chosen equals this target. That is, the probability
of picking S is p, and since all sets are equally likely to be chosen, the number of
size-k subsets equals 1=p.

So what’s p? Well, the probability that the smallest number in the random set
is one of the k numbers in S is k=n. Then, given that the smallest number in the
random set is in S , the probability that the second smallest number in the random
set is one of the remaining k�1 elements in S is .k�1/=.n�1/. So by the product
rule, the probability that the two smallest numbers in the random set are both in S
is

k

n
�
k � 1

n � 1
:

Next, given that the two smallest numbers in the random set are in S , the probability
that the third smallest number is one of the k � 2 remaining elements in S is .k �
2/=.n � 2/. So by the product rule, the probability that the three smallest numbers
in the random set are all in S is

k

n
�
k � 1

n � 1
�
k � 2

n � 2
:

Continuing in this way, it follows that the probability that all k elements in the
randomly chosen set are in S , that is, the probabilty that the randomly chosen set
equals the target, is

p D
k

n
�
k � 1

n � 1
�
k � 2

n � 2
� � �
k � .k � 1/

n � .k � 1/

D
k � .k � 1/ � .k � 1/ � � � 1

n � .n � 1/ � .n � 2/ � � � .n � .k � 1//

D
kŠ

nŠ=.n � k/Š

D
kŠ.n � k/Š

nŠ
:

So we have again shown the number of size-k subsets of Œ1::n�, namely 1=p, is

nŠ

kŠ.n � k/Š
:

18.4.2 Medical Testing

Breast cancer is a deadly disease that claims thousands of lives every year. Early
detection and accurate diagnosis are high priorities, and routine mammograms are
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one of the first lines of defense. They’re not very accurate as far as medical tests go,
but they are correct between 90% and 95% of the time, which seems pretty good
for a relatively inexpensive non-invasive test.1 However, mammogram results are
also an example of conditional probabilities having counterintuitive consequences.
If the test was positive for breast cancer in you or a loved one, and the test is better
than 90% accurate, you’d naturally expect that to mean there is better than 90%
chance that the disease was present. But a mathematical analysis belies that naive
intuitive expectation. Let’s start by precisely defining how accurate a mammogram
is:

� If you have the condition, there is a 10% chance that the test will say you do
not have it. This is called a “false negative.”

� If you do not have the condition, there is a 5% chance that the test will say
you do. This is a “false positive.”

18.4.3 Four Steps Again

Now suppose that we are testing middle-aged women with no family history of
cancer. Among this cohort, incidence of breast cancer rounds up to about 1%.

Step 2: Define Events of Interest
Let A be the event that the person has breast cancer. Let B be the event that the
test was positive. The outcomes in each event are marked in the tree diagram. We
want to find Pr

�
A j B

�
, the probability that a person has breast cancer, given that

the test was positive.

Step 3: Find Outcome Probabilities
First, we assign probabilities to edges. These probabilities are drawn directly from
the problem statement. By the Product Rule, the probability of an outcome is the
product of the probabilities on the corresponding root-to-leaf path. All probabilities
are shown in Figure 18.2.

Step 4: Compute Event Probabilities
From Definition 18.2.1, we have

Pr
�
A j B

�
D

PrŒA \ B�
PrŒB�

D
0:009

0:009C 0:0495
� 15:4%:

So, if the test is positive, then there is an 84.6% chance that the result is incorrect,
even though the test is nearly 95% accurate! So this seemingly pretty accurate

1The statistics in this example are roughly based on actual medical data, but have been altered
somewhat to simplify the calculations.
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Step 1: Find the Sample Space
The sample space is found with the tree diagram in Figure 18.2.

Figure 18.2 The tree diagram for a breast cancer test.
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test doesn’t tell us much. To see why percent accuracy is no guarantee of value,
notice that there is a simple way to make a test that is 99% accurate: always return
a negative result! This test gives the right answer for all healthy people and the
wrong answer only for the 1% that actually have cancer. This 99% accurate test
tells us nothing; the “less accurate” mammogram is still a lot more useful.

18.4.4 Natural Frequencies

That there is only about a 15% chance that the patient actually has the condition
when the test say so may seem surprising at first, but it makes sense with a little
thought. There are two ways the patient could test positive: first, the patient could
have the condition and the test could be correct; second, the patient could be healthy
and the test incorrect. But almost everyone is healthy! The number of healthy
individuals is so large that even the mere 5% with false positive results overwhelm
the number of genuinely positive results from the truly ill.

Thinking like this in terms of these “natural frequencies” can be a useful tool for
interpreting some of the strange seeming results coming from those formulas. For
example, let’s take a closer look at the mammogram example.

Imagine 10,000 women in our demographic. Based on the frequency of the
disease, we’d expect 100 of them to have breast cancer. Of those, 90 would have
a positive result. The remaining 9,900 woman are healthy, but 5% of them—500,
give or take—will show a false positive on the mammogram. That gives us 90
real positives out of a little fewer than 600 positives. An 85% error rate isn’t so
surprising after all.

18.4.5 A Posteriori Probabilities

If you think about it much, the medical testing problem we just considered could
start to trouble you. You may wonder if a statement like “If someone tested positive,
then that person has the condition with probability 18%” makes sense, since a given
person being tested either has the disease or they don’t.

One way to understand such a statement is that it just means that 15% of the
people who test positive will actually have the condition. Any particular person has
it or they don’t, but a randomly selected person among those who test positive will
have the condition with probability 15%.

But what does this 15% probability tell you if you personally got a positive
result? Should you be relieved that there is less than one chance in five that you
have the disease? Should you worry that there is nearly one chance in five that you
do have the disease? Should you start treatment just in case? Should you get more
tests?

These are crucial practical questions, but it is important to understand that they
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are not mathematical questions. Rather, these are questions about statistical judge-
ments and the philosophical meaning of probability. We’ll say a bit more about this
after looking at one more example of after-the-fact probabilities.

The Hockey Team in Reverse

Suppose that we turn the hockey question around: what is the probability that the
local C-league hockey team won their first game, given that they won the series?

As we discussed earlier, some people find this question absurd. If the team has
already won the tournament, then the first game is long since over. Who won the
first game is a question of fact, not of probability. However, our mathematical
theory of probability contains no notion of one event preceding another. There
is no notion of time at all. Therefore, from a mathematical perspective, this is a
perfectly valid question. And this is also a meaningful question from a practical
perspective. Suppose that you’re told that the local team won the series, but not
told the results of individual games. Then, from your perspective, it makes perfect
sense to wonder how likely it is that local team won the first game.

A conditional probability Pr
�
B j A

�
is called a posteriori if event B precedes

event A in time. Here are some other examples of a posteriori probabilities:

� The probability it was cloudy this morning, given that it rained in the after-
noon.

� The probability that I was initially dealt two queens in Texas No Limit Hold
’Em poker, given that I eventually got four-of-a-kind.

from ordinary probabilities; the distinction comes from our view of causality, which
is a philosophical question rather than a mathematical one.

Let’s return to the original problem. The probability that the local team won their
first game, given that they won the series is Pr

�
B j A

�
. We can compute this using

the definition of conditional probability and the tree diagram in Figure 18.1:

Pr
�
B j A

�
D

PrŒB \ A�
PrŒA�

D
1=3C 1=18

1=3C 1=18C 1=9
D
7

9
:

In general, such pairs of probabilities are related by Bayes’ Rule:

Theorem 18.4.1 (Bayes’ Rule).

Pr
�
B j A

�
D

Pr
�
A j B

�
� PrŒB�

PrŒA�
(18.2)

Proof. We have

Pr
�
B j A

�
� PrŒA� D PrŒA \ B� D Pr

�
A j B

�
� PrŒB�

by definition of conditional probability. Dividing by PrŒA� gives (18.2). �
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18.4.6 Philosphy of Probability

Let’s try to assign a probability to the event

Œ26972607 � 1 is a prime number�

It’s not obvious how to check whether such a large number is prime, so you might
try an estimation based on the density of primes. The Prime Number Theorem
implies that only about 1 in 5 million numbers in this range are prime, so you might
say that the probability is about 2 � 10�8. On the other hand, given that we chose
this example to make some philosophical point, you might guess that we probably
purposely chose an obscure looking prime number, and you might be willing to
make an even money bet that the number is prime. In other words, you might think
the probability is 1/2. Finally, we can take the position that assigning a probability
to this statement is nonsense because there is no randomness involved; the number
is either prime or it isn’t. This is the view we take in this text.

An alternate view is the Bayesian approach, in which a probability is interpreted
as a degree of belief in a proposition. A Bayesian would agree that the number
above is either prime or composite, but they would be perfectly willing to assign a
probability to each possibility. The Bayesian approach is very broad in its willing-
ness to assign probabilities to any event, but the problem is that there is no single
“right” probability for an event, since the probability depends on one’s initial be-
liefs. On the other hand, if you have confidence in some set of initial beliefs, then
Bayesianism provides a convincing framework for updating your beliefs as further
information emerges.

As an aside, it is not clear whether Bayes himself was Bayesian in this sense.
However, a Bayesian would be willing to talk about the probability that Bayes was
Bayesian.

Another school of thought says that probabilities can only be meaningfully ap-
plied to repeatable processes like rolling dice or flipping coins. In this frequen-
tist view, the probability of an event represents the fraction of trials in which the
event occurred. So we can make sense of the a posteriori probabilities of the C-
league hockey example of Section 18.4.5 by imagining that many hockey series
were played, and the probability that the local team won their first game, given that
they won the series, is simply the fraction of series where they won the first game
among all the series they won.

Getting back to prime numbers, we mentioned in Section 9.5.1 that there is a
probabilistic primality test. If a number N is composite, there is at least a 3=4
chance that the test will discover this. In the remaining 1=4 of the time, the test is
inconclusive. But as long as the result is inconclusive, the test can be run indepen-
dently again and again up to, say, 100 times. So if N actually is composite, then
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the probability that 100 repetitions of the probabilistic test do not discover this is at
most: �

1

4

�100
:

If the test remained inconclusive after 100 repetitions, it is still logically possible
thatN is composite, but betting thatN is prime would be the best bet you’ll ever get
to make! If you’re comfortable using probability to describe your personal belief
about primality after such an experiment, you are being a Bayesian. A frequentist
would not assign a probability to N ’s primality, but they would also be happy to
bet on primality with tremendous confidence. We’ll examine this issue again when
we discuss polling and confidence levels in Section 18.9.

Despite the philosophical divide, the real world conclusions Bayesians and Fre-
quentists reach from probabilities are pretty much the same, and even where their
interpretations differ, they use the same theory of probability.

18.5 The Law of Total Probability

Breaking a probability calculation into cases simplifies many problems. The idea
is to calculate the probability of an event A by splitting into two cases based on
whether or not another event E occurs. That is, calculate the probability of A \ E
and A\E. By the Sum Rule, the sum of these probabilities equals PrŒA�. Express-
ing the intersection probabilities as conditional probabilities yields:

Rule 18.5.1 (Law of Total Probability: single event).

PrŒA� D Pr
�
A j E

�
� PrŒE�C Pr

�
A
ˇ̌
E
�
� PrŒE�:

For example, suppose we conduct the following experiment. First, we flip a fair
coin. If heads comes up, then we roll one die and take the result. If tails comes up,
then we roll two dice and take the sum of the two results. What is the probability
that this process yields a 2? Let E be the event that the coin comes up heads,
and let A be the event that we get a 2 overall. Assuming that the coin is fair,
PrŒE� D PrŒE� D 1=2. There are now two cases. If we flip heads, then we roll
a 2 on a single die with probability Pr

�
A j E

�
D 1=6. On the other hand, if we

flip tails, then we get a sum of 2 on two dice with probability Pr
�
A
ˇ̌
E
�
D 1=36.

Therefore, the probability that the whole process yields a 2 is

PrŒA� D
1

2
�
1

6
C
1

2
�
1

36
D

7

72
:
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This rule extends to any set of disjoint events that make up the entire sample
space. For example,

Rule (Law of Total Probability: 3-events). If E1; E2 and E3 are disjoint, and
PrŒE1 [E2 [E3� D 1, then

PrŒA� D Pr
�
A j E1

�
� PrŒE1�C Pr

�
A j E2

�
� PrŒE2�C Pr

�
A j E3

�
� PrŒE3� :

This in turn leads to a three-event version of Bayes’ Rule in which the probability
of event E1 given A is calculated from the “inverse” conditional probabilities of A
given E1, E2, and E3:

Rule (Bayes’ Rule: 3-events).

Pr
�
E1 j A

�
D

Pr
�
A j E1

�
� PrŒE1�

Pr
�
A j E1

�
� PrŒE1�C Pr

�
A j E2

�
� PrŒE2�C Pr

�
A j E3

�
� PrŒE3�

The generalization of these rules to n disjoint events is a routine exercise (Prob-
lems 18.3 and 18.4).

18.5.1 Conditioning on a Single Event

The probability rules that we derived in Section 17.5.2 extend to probabilities con-
ditioned on the same event. For example, the Inclusion-Exclusion formula for two
sets holds when all probabilities are conditioned on an event C :

Pr
�
A [ B j C

�
D Pr

�
A j C

�
C Pr

�
B j C

�
� Pr

�
A \ B j C

�
:

This is easy to verify by plugging in the Definition 18.2.1 of conditional probabil-
ity.2

It is important not to mix up events before and after the conditioning bar. For
example, the following is not a valid identity:

False Claim.

Pr
�
A j B [ C

�
D Pr

�
A j B

�
C Pr

�
A j C

�
� Pr

�
A j B \ C

�
: (18.3)

A simple counter-example is to let B and C be events over a uniform space with
most of their outcomes in A, but not overlapping. This ensures that Pr

�
A j B

�
and

Pr
�
A j C

�
are both close to 1. For example,

B WWD Œ0::9�;

C WWD Œ10::18� [ f0g;

A WWD Œ1::18�;

2Problem 18.13 explains why this and similar conditional identities follow on general principles
from the corresponding unconditional identities.
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so
Pr
�
A j B

�
D

9

10
D Pr

�
A j C

�
:

Also, since 0 is the only outcome in B \ C and 0 … A, we have

Pr
�
A j B \ C

�
D 0

So the right-hand side of (18.3) is 1.8, while the left-hand side is a probability
which can be at most 1—actually, it is 18/19.

18.6 Simpson’s Paradox

In 1973, a famous university was investigated for gender discrimination [7]. The
investigation was prompted by evidence that, at first glance, appeared definitive: in
1973, 44% of male applicants to the school’s graduate programs were accepted, but
only 35% of female applicants were admitted.

However, this data turned out to be completely misleading. Analysis of the in-
dividual departments, showed not only that few showed significant evidence of
bias, but also that among the few departments that did show statistical irregulari-
ties, most were slanted in favor of women. This suggests that if there was any sex
discrimination, then it was against men!

Given the discrepancy in these findings, it feels like someone must be doing bad
math—intentionally or otherwise. But the numbers are not actually inconsistent.
In fact, this statistical hiccup is common enough to merit its own name: Simpson’s
Paradox occurs when multiple small groups of data all exhibit a similar trend, but
that trend reverses when those groups are aggregated. To explain how this is pos-
sible, let’s first clarify the problem by expressing both arguments in terms of con-
ditional probabilities. For simplicity, suppose that there are only two departments
EE and CS. Consider the experiment where we pick a random candidate. Define
the following events:

� AWWD the candidate is admitted to his or her program of choice,

� FEE WWD the candidate is a woman applying to the EE department,

� FCS WWD the candidate is a woman applying to the CS department,

� MEE WWD the candidate is a man applying to the EE department,

� MCS WWD the candidate is a man applying to the CS department.
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CS 2 men admitted out of 5 candidates 40%
50 women admitted out of 100 candidates 50%

EE 70 men admitted out of 100 candidates 70%
4 women admitted out of 5 candidates 80%

Overall 72 men admitted, 105 candidates � 69%
54 women admitted, 105 candidates � 51%

Table 18.1 A scenario in which men are overall more likely than women to be
admitted to a school, despite being less likely to be admitted into any given pro-
gram.

Assume that all candidates are either men or women, and that no candidate belongs
to both departments. That is, the events FEE , FCS ,MEE andMCS are all disjoint.

In these terms, the plaintiff’s assertion—that a male candidate is more likely to
be admitted to the university than a female—can be expressed by the following
inequality:

Pr
�
A j MEE [MCS

�
> Pr

�
A j FEE [ FCS

�
:

The university’s retort that in any given department, a male applicant is less
likely to be admitted than a female can be expressed by a pair of inequalities:

Pr
�
A j MEE

�
< Pr

�
A j FEE

�
and

Pr
�
A j MCS

�
< Pr

�
A j FCS

�
:

We can explain how there could be such a discrepancy between university-wide
and department-by-department admission statistics by supposing that the CS de-
partment is more selective than the EE department, but CS attracts a far larger
number of woman applicants than EE.3. Table 18.1 shows some admission statis-
tics for which the inequalities asserted by both the plaintiff and the university hold.

Initially, we and the plaintiffs both assumed that the overall admissions statistics
for the university could only be explained by gender discrimination. The depart-
ment by department statistics seems to belie the accusation of discrimination. But
do they really?

Suppose we replaced “the candidate is a man/woman applying to the EE depart-
ment,” by “the candidate is a man/woman for whom an admissions decision was
made during an odd-numbered day of the month,” and likewise with CS and an
even-numbered day of the month. Since we don’t think the parity of a date is a

3At the actual university in the lawsuit, the “exclusive” departments more popular among women
were those that did not require a mathematical foundation, such as English and education. Women’s
disproportionate choice of these careers reflects gender bias, but one which predates the university’s
involvement.
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cause for the outcome of an admission decision, we would most likely dismiss the
“coincidence” that on both odd and even dates, women are more frequently admit-
ted. Instead we would judge, based on the overall data showing women less likely
to be admitted, that gender bias against women was an issue in the university.

Bear in mind that it would be the same numerical data that we would be using
to justify our different conclusions in the department-by-department case and the
even-day-odd-day case. We interpreted the same numbers differently based on our
implicit causal beliefs, specifically that departments matter and date parity does
not. It is circular to claim that the data corroborated our beliefs that there is or is not
discrimination. Rather, our interpretation of the data correlation depended on our
beliefs about the causes of admission in the first place.4 This example highlights
a basic principle in statistics which people constantly ignore: never assume that
correlation implies causation.

18.7 Independence

Suppose that we flip two fair coins simultaneously on opposite sides of a room.
Intuitively, the way one coin lands does not affect the way the other coin lands.
The mathematical concept that captures this intuition is called independence.

Definition 18.7.1. An event with probability 0 is defined to be independent of every
event (including itself). If PrŒB� ¤ 0, then event A is independent of event B iff

Pr
�
A j B

�
D PrŒA�: (18.4)

In other words, A and B are independent if knowing that B happens does not al-
ter the probability thatA happens, as is the case with flipping two coins on opposite
sides of a room.

Potential Pitfall

Students sometimes get the idea that disjoint events are independent. The opposite
is true: if A \ B D ;, then knowing that A happens means you know that B
does not happen. Disjoint events are never independent—unless one of them has
probability zero.

4These issues are thoughtfully examined in Causality: Models, Reasoning and Inference, Judea
Pearl, Cambridge U. Press, 2001.
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18.7.1 Alternative Formulation

Sometimes it is useful to express independence in an alternate form which follows
immediately from Definition 18.7.1:

Theorem 18.7.2. A is independent of B if and only if

PrŒA \ B� D PrŒA� � PrŒB�: (18.5)

Notice that Theorem 18.7.2 makes apparent the symmetry between A being in-
dependent of B and B being independent of A:

Corollary 18.7.3. A is independent of B iff B is independent of A.

18.7.2 Independence Is an Assumption

Generally, independence is something that you assume in modeling a phenomenon.
For example, consider the experiment of flipping two fair coins. Let A be the event
that the first coin comes up heads, and let B be the event that the second coin is
heads. If we assume that A and B are independent, then the probability that both
coins come up heads is:

PrŒA \ B� D PrŒA� � PrŒB� D
1

2
�
1

2
D
1

4
:

In this example, the assumption of independence is reasonable. The result of one
coin toss should have negligible impact on the outcome of the other coin toss. And
if we were to repeat the experiment many times, we would be likely to have A\B
about 1/4 of the time.

On the other hand, there are many examples of events where assuming indepen-
dence isn’t justified. For example, an hourly weather forecast for a clear day might
list a 10% chance of rain every hour from noon to midnight, meaning each hour has
a 90% chance of being dry. But that does not imply that the odds of a rainless day
are a mere 0:912 � 0:28. In reality, if it doesn’t rain as of 5pm, the odds are higher
than 90% that it will stay dry at 6pm as well—and if it starts pouring at 5pm, the
chances are much higher than 10% that it will still be rainy an hour later.

Deciding when to assume that events are independent is a tricky business. In
practice, there are strong motivations to assume independence since many useful
formulas (such as equation (18.5)) only hold if the events are independent. But you
need to be careful: we’ll describe several famous examples where (false) assump-
tions of independence led to trouble. This problem gets even trickier when there
are more than two events in play.
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18.8 Mutual Independence

We have defined what it means for two events to be independent. What if there are
more than two events? For example, how can we say that the flips of n coins are
all independent of one another? A set of events is said to be mutually independent
if the probability of each event in the set is the same no matter which of the other
events has occurred. This is equivalent to saying that for any selection of two or
more of the events, the probability that all the selected events occur equals the
product of the probabilities of the selected events.

For example, four events E1; E2; E3; E4 are mutually independent if and only if
all of the following equations hold:

PrŒE1 \E2� D PrŒE1� � PrŒE2�

PrŒE1 \E3� D PrŒE1� � PrŒE3�

PrŒE1 \E4� D PrŒE1� � PrŒE4�

PrŒE2 \E3� D PrŒE2� � PrŒE3�

PrŒE2 \E4� D PrŒE2� � PrŒE4�

PrŒE3 \E4� D PrŒE3� � PrŒE4�

PrŒE1 \E2 \E3� D PrŒE1� � PrŒE2� � PrŒE3�

PrŒE1 \E2 \E4� D PrŒE1� � PrŒE2� � PrŒE4�

PrŒE1 \E3 \E4� D PrŒE1� � PrŒE3� � PrŒE4�

PrŒE2 \E3 \E4� D PrŒE2� � PrŒE3� � PrŒE4�

PrŒE1 \E2 \E3 \E4� D PrŒE1� � PrŒE2� � PrŒE3� � PrŒE4�

The generalization to mutual independence of n events should now be clear.

18.8.1 DNA Testing

Assumptions about independence are routinely made in practice. Frequently, such
assumptions are quite reasonable. Sometimes, however, the reasonableness of an
independence assumption is not so clear, and the consequences of a faulty assump-
tion can be severe.

Let’s return to the O. J. Simpson murder trial. The following expert testimony
was given on May 15, 1995:

Mr. Clarke: When you make these estimations of frequency—and I believe you
touched a little bit on a concept called independence?

Dr. Cotton: Yes, I did.
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Mr. Clarke: And what is that again?

Dr. Cotton: It means whether or not you inherit one allele that you have is not—
does not affect the second allele that you might get. That is, if you inherit
a band at 5,000 base pairs, that doesn’t mean you’ll automatically or with
some probability inherit one at 6,000. What you inherit from one parent is
[independent of] what you inherit from the other.

Mr. Clarke: Why is that important?

Dr. Cotton: Mathematically that’s important because if that were not the case, it
would be improper to multiply the frequencies between the different genetic
locations.

Mr. Clarke: How do you—well, first of all, are these markers independent that
you’ve described in your testing in this case?

Presumably, this dialogue was as confusing to you as it was for the jury. Es-
sentially, the jury was told that genetic markers in blood found at the crime scene
matched Simpson’s. Furthermore, they were told that the probability that the mark-
ers would be found in a randomly-selected person was at most 1 in 170 million.
This astronomical figure was derived from statistics such as:

� 1 person in 100 has marker A.

� 1 person in 50 marker B .

� 1 person in 40 has marker C .

� 1 person in 5 has marker D.

� 1 person in 170 has marker E.

Then these numbers were multiplied to give the probability that a randomly-selected
person would have all five markers:

PrŒA \ B \ C \D \E� D PrŒA� � PrŒB� � PrŒC � � PrŒD� � PrŒE�

D
1

100
�
1

50
�
1

40
�
1

5
�
1

170
D

1

170;000;000
:

The defense pointed out that this assumes that the markers appear mutually in-
dependently. Furthermore, all the statistics were based on just a few hundred blood
samples.

After the trial, the jury was widely mocked for failing to “understand” the DNA
evidence. If you were a juror, would you accept the 1 in 170 million calculation?



“mcs” — 2017/6/5 — 19:42 — page 784 — #792

Chapter 18 Conditional Probability784

18.8.2 Pairwise Independence

The definition of mutual independence seems awfully complicated—there are so
many selections of events to consider! Here’s an example that illustrates the sub-
tlety of independence when more than two events are involved. Suppose that we
flip three fair, mutually-independent coins. Define the following events:

� A1 is the event that coin 1 matches coin 2.

� A2 is the event that coin 2 matches coin 3.

� A3 is the event that coin 3 matches coin 1.

Are A1, A2, A3 mutually independent?
The sample space for this experiment is:

fHHH; HHT; HTH; HT T; THH; THT; T TH; T T T g:

Every outcome has probability .1=2/3 D 1=8 by our assumption that the coins are
mutually independent.

To see if events A1, A2 and A3 are mutually independent, we must check a
sequence of equalities. It will be helpful first to compute the probability of each
event Ai :

PrŒA1� D PrŒHHH�C PrŒHHT �C PrŒT TH�C PrŒT T T �

D
1

8
C
1

8
C
1

8
C
1

8
D
1

2
:

By symmetry, PrŒA2� D PrŒA3� D 1=2 as well. Now we can begin checking all the
equalities required for mutual independence:

PrŒA1 \ A2� D PrŒHHH�C PrŒT T T � D
1

8
C
1

8
D
1

4
D
1

2
�
1

2

D PrŒA1�PrŒA2�:

By symmetry, PrŒA1\A3� D PrŒA1� �PrŒA3� and PrŒA2\A3� D PrŒA2� �PrŒA3�
must hold also. Finally, we must check one last condition:

PrŒA1 \ A2 \ A3� D PrŒHHH�C PrŒT T T � D
1

8
C
1

8
D
1

4

¤
1

8
D PrŒA1�PrŒA2�PrŒA3�:

The three events A1, A2 and A3 are not mutually independent even though any
two of them are independent! This not-quite mutual independence seems weird at
first, but it happens. It even generalizes:
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Definition 18.8.1. A set A1, A2, . . . , of events is k-way independent iff every set
of k of these events is mutually independent. The set is pairwise independent iff it
is 2-way independent.

So the events A1, A2, A3 above are pairwise independent, but not mutually inde-
pendent. Pairwise independence is a much weaker property than mutual indepen-
dence.

For example, suppose that the prosecutors in the O. J. Simpson trial were wrong
and markers A, B , C , D and E are only pairwise independently. Then the proba-
bility that a randomly-selected person has all five markers is no more than:

PrŒA \ B \ C \D \E� � PrŒA \E� D PrŒA� � PrŒE�

D
1

100
�
1

170
D

1

17;000
:

The first line uses the fact that A\B\C \D\E is a subset of A\E. (We picked
out theA andE markers because they’re the rarest.) We use pairwise independence
on the second line. Now the probability of a random match is 1 in 17,000—a far cry
from 1 in 170 million! And this is the strongest conclusion we can reach assuming
only pairwise independence.

On the other hand, the 1 in 17,000 bound that we get by assuming pairwise
independence is a lot better than the bound that we would have if there were no
independence at all. For example, if the markers are dependent, then it is possible
that

everyone with marker E has marker A,

everyone with marker A has marker B ,

everyone with marker B has marker C , and

everyone with marker C has marker D.

In such a scenario, the probability of a match is

PrŒE� D
1

170
:

So a stronger independence assumption leads to a smaller bound on the prob-
ability of a match. The trick is to figure out what independence assumption is
reasonable. Assuming that the markers are mutually independent may well not be
reasonable unless you have examined hundreds of millions of blood samples. Oth-
erwise, how would you know that marker D does not show up more frequently
whenever the other four markers are simultaneously present?
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18.9 Probability versus Confidence

Let’s look at some other problems like the breast cancer test of Section 18.4.2, but
this time we’ll use more extreme numbers to highlight some key issues.

18.9.1 Testing for Tuberculosis

Let’s suppose we have a really terrific diagnostic test for tuberculosis (TB): if you
have TB, the test is guaranteed to detect it, and if you don’t have TB, then the test
will report that correctly 99% of the time!

In other words, let “TB” be the event that a person has TB, “pos” be the event
that the person tests positive for TB, so “pos” is the event that they test negative.
Now we can restate these guarantees in terms of conditional probabilities:

Pr
�
pos j TB

�
D 1; (18.6)

Pr
�
pos

ˇ̌
TB
�
D 0:99: (18.7)

This means that the test produces the correct result at least 99% of the time,
regardless of whether or not the person has TB. A careful statistician would assert:5

Lemma. You can be 99% confident that the test result is correct.

Corollary 18.9.1. If you test positive, then

either you have TB or something very unlikely (probability 1/100) hap-
pened.

Lemma 18.9.1 and Corollary 18.9.1 may seem to be saying that

False Claim. If you test positive, then the probability that you have TB is 0:99.

But this would be a mistake.
To highlight the difference between confidence in the test diagnosis versus the

probability of TB, let’s think about what to do if you test positive. Corollary 18.9.1

5Confidence is usually used to describe the probability that a statistical estimations of some quan-
tity is correct (Section 20.5). We are trying to simplify the discussion by using this one concept to
illustrate standard approaches to both hypothesis testing and estimation.

In the context of hypothesis testing, statisticians would normally distinguish the “false positive”
probability, in this case the probability 0.01 that a healthy person is incorrectly diagnosed as having
TB, and call this the significance of the test. The “false negative” probability would be the probability
that person with TB is incorrectly diagnosed as healthy; it is zero. The power of the test is one minus
the false negative probability, so in this case the power is the highest possible, namely, one.
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seems to suggest that it’s worth betting with high odds that you have TB, because
it makes sense to bet against something unlikely happening—like the test being
wrong. But having TB actually turns out to be a lot less likely than the test being
wrong. So the either-or of Corollary 18.9.1 is really an either-or between some-
thing happening that is extremely unlikely—having TB—and something that is
only very unlikely—the diagnosis being wrong. You’re better off betting against
the extremely unlikely event, that is, it is better to bet the diagnosis is wrong.

So some knowledge of the probability of having TB is needed in order to figure
out how seriously to take a positive diagnosis, even when the diagnosis is given with
what seems like a high level of confidence. We can see exactly how the frequency
of TB in a population influences the importance of a positive diagnosis by actually
calculating the probability that someone who tests positive has TB. That is, we want
to calculate Pr

�
TB j pos

�
, which we do next.

18.9.2 Updating the Odds

Bayesian Updating

A standard way to convert the test probabilities into outcome probabilities is to use
Bayes Theorem (18.2). It will be helpful to rephrase Bayes Theorem in terms of
“odds” instead of probabilities.

If H is an event, we define the odds of H to be

Odds.H/ WWD
PrŒH �

PrŒH �
D

PrŒH �
1 � PrŒH �

:

For example, if H is the event of rolling a four using a fair, six-sided die, then

PrŒroll four� D 1=6; so

Odds.roll four/ D
1=6

5=6
D
1

5
:

A gambler would say the odds of rolling a four were “one to five,” or equivalently,
“five to one against” rolling a four.

Odds are just another way to talk about probabilities. For example, saying the
odds that a horse will win a race are “three to one” means that the horse will win
with probability 1=4. In general,

PrŒH � D
Odds.H/

1C Odds.H/
:

Now suppose an event E offers some evidence about H . We now want to find
the conditional probability of H given E. We can just as well find the odds of H
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given E,

Odds.H j E/ WWD
Pr
�
H j E

�
Pr
�
H
ˇ̌
E
�

D
Pr
�
E j H

�
PrŒH �=PrŒE�

Pr
�
E
ˇ̌
H
�

PrŒH �=PrŒE�
(Bayes Theorem)

D
Pr
�
E j H

�
Pr
�
E
ˇ̌
H
� � PrŒH �

PrŒH �

D Bayes-factor.E;H/ � Odds.H/;

where

Bayes-factor.E;H/ WWD
Pr
�
E j H

�
Pr
�
E
ˇ̌
H
� :

So to update the odds ofH given the evidenceE, we just multiply by Bayes Factor:

Lemma 18.9.2.

Odds.H j E/ D Bayes-factor.E;H/ � Odds.H/:

Odds for the TB test

The probabilities of test outcomes given in (18.6) and (18.7) are exactly what we
need to find Bayes factor for the TB test:

Bayes-factor.TB; pos/ D
Pr
�
pos j TB

�
Pr
�
pos

ˇ̌
TB
�

D
1

1 � Pr
�
pos

ˇ̌
TB
�

D
1

1 � 0:99
D 100:

So testing positive for TB increases the odds you have TB by a factor of 100, which
means a positive test is significant evidence supporting a diagnosis of TB. That
seems good to know. But Lemma 18.9.2 also makes it clear that when a random
person tests positive, we still can’t determine the odds they have TB unless we
know what are the odds of their having TB in the first place, so let’s examine that.

In 2011, the United States Center for Disease Control got reports of 11,000 cases
of TB in US. We can estimate that there were actually about 30,000 cases of TB
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that year, since it seems that only about one third of actual cases of TB get reported.
The US population is a little over 300 million, which means

PrŒTB� �
30; 000

300; 000; 000
D

1

10; 000
:

So the odds of TB are 1=9999. Therefore,

Odds.TB j pos/ D 100 �
1

9; 999
�

1

100
:

In other words, even if someone tests positive for TB at the 99% confidence level,
the odds remain about 100 to one against their having TB. The 99% confidence
level is not nearly high enough to overcome the relatively tiny probability of having
TB.

18.9.3 Facts that are Probably True

We have figured out that if a random person tests positive for TB, the probability
they have TB is about 1/100. Now if you personally happened to test positive for
TB, a competent doctor typically would tell you that the probability that you have
TB has risen from 1/10,000 to 1/100. But has it? Not really.

Your doctor should have not have been talking in this way about your particular
situation. He should just have stuck to the statement that for randomly chosen
people, the positive test would be right only one percent of the time. But you are
not a random person, and whether or not you have TB is a fact about reality. The
truth about your having TB may be unknown to your doctor and you, but that does
not mean it has some probability of being true. It is either true or false, we just
don’t know which.

In fact, if you were worried about a 1/100 probability of having this serious
disease, you could use additional information about yourself to change this proba-
bility. For example, native born residents of the US are about half as likely to have
TB as foreign born residents. So if you are native born, “your” probability of hav-
ing TB halves. Conversely, TB is twenty-five times more frequent among native
born Asian/Pacific Islanders than native born Caucasions. So your probability of
TB would increase dramatically if your family was from an Asian/Pacific Island.

The point is that the probability of having TB that your doctor reports to you
depends on the probability of TB for a random person whom the doctor thinks
is like you. The doctor has made a judgment about you based, for example, on
what personal factors he considers relevant to getting TB, or how serious he thinks
the consequences of a mistaken diagnosis would be. These are important medical
judgments, but they are not mathematical. Different doctors will make different
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judgments about who is like you, and they will report differing probabilities. There
is no “true” model of who you are, and there is no true individual probability of
your having TB.

18.9.4 Extreme events

The definition of a fair coin is one where the probability of flipping a Head is 1/2
and likewise for flipping a Tail. Now suppose you flip the coin one hundred times
and get a Head every time. What do you think the odds are that the next flip will
also be a Head?

The official answer is that, by definition of “fair coin,” the probability of Heads
on the next flip is still 1/2. But this reasoning completely contradicts what any
sensible person would do, which is to bet heavily on the next flip being another
Head.

How to make sense of this? To begin, let’s recognize how absurd it is to wonder
about what happens after one hundred heads, because the probability that a hundred
flips of a fair coin will all come up Heads is unimaginably tiny. For example, the
probability that just the first fifty out of the hundred fair flips come up Heads is 2�50.
We can try to make some sense of how small this number is with the observation
that, using a reasonable estimation of the number of people worldwide who are
killed by lightning in a given year, 2�50 is about equal to the probability that a
random person would be struck by lightning during the time it takes to read this
paragraph. Ain’t gonna happen.

The negligible probability that one hundred flips of a fair coin will all be Heads
simply undermines the credibility of the assumption that the coin is fair. Despite
being told the coin is fair, we can’t help but acknowledge at least some remote
possibility that the coin being flipped was one that rarely produced heads. So let’s
assume that there are two coins, a fair one and a biased one that comes up Heads
with probability 99/100. One of these coins is randomly chosen with the fair coin
hugely favored: the biased coin will be chosen only with extremely small probabil-
ity 2�50. The chosen coin is then flipped one hundred times. Let E be the event of
flipping one hundred heads and H be the event that the biased coin was chosen.

Now

Odds.H/ D
2�50

1 � 2�50
� 2�50;

Bayes-factor.E;H/ D
Pr
�
E j H

�
Pr
�
E
ˇ̌
H
� D .99=100/100

2�100
> 0:36 � 2100;

Odds.H j E/ D Bayes-factor.E;H/ � Odds.H/

> 0:36 � 2100 � 2�50 D 0:36 � 250:
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This shows that after flipping one hundred heads, the odds that the biased coin was
chosen are overwhelming, and so with high probability the next flip will be a Head.
Thus, by assuming some tiny probability for the coin being heavily biased toward
Heads, we can justify our intuition that after one hundred consecutive Heads, the
next flip is very likely to be a Head.

Making an assumption about the probability that some unverified fact is true is
known as the Bayesian approach to a hypothesis testing problem. By granting a tiny
probability that the biased coin was being flipped, this Bayesian approach provided
a reasonable justification for estimating that the odds of a Head on the next flip are
ninety-nine to one in favor.

18.9.5 Confidence in the Next Flip

If we stick to confidence rather than probability, we don’t need to make any Bayesian
assumptions about the probability of a fair coin. We know that if one hundred
Heads are flipped, then either the coin is biased, or something that virtually never
happens (probability 2�100) has occurred. That means we can assert that the coin
is biased at the 1 � 2�100 confidence level. In short, when one hundred Heads are
flipped, we can be essentially 100% confident that the coin is biased.

Problems for Section 18.4

Homework Problems

Problem 18.1.
The Conditional Probability Product Rule for n Events is

Rule.

PrŒE1 \E2 \ : : : \En� DPrŒE1� � Pr
�
E2 j E1

�
� Pr

�
E3 j E1 \E2

�
� � �

� Pr
�
En j E1 \E2 \ : : : \En�1

�
:

(a) Restate the Rule without using elipses (. . . ).

(b) Prove it by induction.
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Problems for Section 18.5

Practice Problems

Problem 18.2.
Dirty Harry places two bullets in random chambers of the six-bullet cylinder of his
revolver. He gives the cylinder a random spin and says “Feeling lucky?” as he
holds the gun against your heart.
(a) What is the probability that you will get shot if he pulls the trigger?

(b) Suppose he pulls the trigger and you don’t get shot. What is the probability
that you will get shot if he pulls the trigger a second time?

(c) Suppose you noticed that he placed the two shells next to each other in the
cylinder. How does this change the answers to the previous two questions?

Problem 18.3.
State and prove a version of the Law of Total Probability that applies to disjoint
events E1; : : : ; En whose union is the whole sample space.

Problem 18.4.
State and prove a version of Bayes Rule that applies to disjoint events E1; : : : ; En
whose union is the whole sample space. You may assume the n-event Law of Total
Probability, Problem 18.3.

Class Problems

Problem 18.5.
There are two decks of cards. One is complete, but the other is missing the ace
of spades. Suppose you pick one of the two decks with equal probability and then
select a card from that deck uniformly at random. What is the probability that you
picked the complete deck, given that you selected the eight of hearts? Use the
four-step method and a tree diagram.

Problem 18.6.
Suppose you have three cards: A~, A� and a jack. From these, you choose a
random hand (that is, each card is equally likely to be chosen) of two cards, and let
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n be the number of aces in your hand. You then randomly pick one of the cards in
the hand and reveal it.

(a) Describe a simple probability space (that is, outcomes and their probabilities)
for this scenario, and list the outcomes in each of the following events:

1. Œn � 1�, (that is, your hand has an ace in it),

2. A~ is in your hand,

3. the revealed card is an A~,

4. the revealed card is an ace.

(b) Then calculate Pr
�
n D 2 j E

�
forE equal to each of the four events in part (a).

Notice that most, but not all, of these probabilities are equal.

Now suppose you have a deck with d distinct cards, a different kinds of aces
(including an A~), you draw a random hand with h cards, and then reveal a random
card from your hand.

(c) Prove that PrŒA~ is in your hand� D h=d .

(d) Prove that

Pr
�
n D 2 j A~ is in your hand

�
D PrŒn D 2� �

2d

ah
: (18.8)

(e) Conclude that

Pr
�
n D 2 j the revealed card is an ace

�
D Pr

�
n D 2 j A~ is in your hand

�
:

Problem 18.7.
There are three prisoners in a maximum-security prison for fictional villains: the
Evil Wizard Voldemort, the Dark Lord Sauron, and Little Bunny Foo-Foo. The
parole board has declared that it will release two of the three, chosen uniformly at
random, but has not yet released their names. Naturally, Sauron figures that he will
be released to his home in Mordor, where the shadows lie, with probability 2=3.

A guard offers to tell Sauron the name of one of the other prisoners who will be
released (either Voldemort or Foo-Foo). If the guard has a choice of naming either
Voldemort or Foo-Foo (because both are to be released), he names one of the two
with equal probability.

Sauron knows the guard to be a truthful fellow. However, Sauron declines this
offer. He reasons that knowing what the guards says will reduce his chances, so he
is better off not knowing. For example, if the guard says, “Little Bunny Foo-Foo
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will be released”, then his own probability of release will drop to 1=2 because he
will then know that either he or Voldemort will also be released, and these two
events are equally likely.

Dark Lord Sauron has made a typical mistake when reasoning about conditional
probability. Using a tree diagram and the four-step method, explain his mistake.
What is the probability that Sauron is released given that the guard says Foo-Foo is
released?

Hint: Define the events S , F and “F ” as follows:

“F ” D Guard says Foo-Foo is released

F D Foo-Foo is released

S D Sauron is released

Problem 18.8.
Every Skywalker serves either the light side or the dark side.

� The first Skywalker serves the dark side.

� For n � 2, the n-th Skywalker serves the same side as the .n � 1/-st Sky-
walker with probability 1=4, and the opposite side with probability 3=4.

Let dn be the probability that the n-th Skywalker serves the dark side.
(a) Express dn with a recurrence equation and sufficient base cases.

(b) Derive a simple expression for the generating function D.x/ WWD
P1
1 dnx

n.

(c) Give a simple closed formula for dn.

Problem 18.9. (a) For the directed acyclic graph (DAG) G0 in Figure 18.3, a
minimum-edge DAG with the same walk relation can be obtained by removing
some edges. List these edges (use notation hu!vi for an edge from u to v):

(b) List the vertices in a maximal chain in G0.

Let G be the simple graph shown in Figure 18.4.
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Figure 18.3 The DAG G0
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Figure 18.4 Simple graph G
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A directed graph
�!
G can be randomly constructed fromG by assigning a direction

to each edge independently with equal likelihood.

(c) What is the probability that
�!
G D G0?

Define the following events with respect to the random graph
�!
G :

T1 WWD vertices 2; 3; 4 are on a length three directed cycle;

T2 WWD vertices 1; 3; 4 are on a length three directed cycle;

T3 WWD vertices 1; 2; 4 are on a length three directed cycle;

T4 WWD vertices 1; 2; 3 are on a length three directed cycle:

(d) What is

PrŒT1�‹

PrŒT1 \ T2�‹

PrŒT1 \ T2 \ T3�‹

(e)
�!
G has the property that if it has a directed cycle, then it has a length three

directed cycle. Use this fact to find the probability that
�!
G is a DAG.

Homework Problems

Problem 18.10.
There is a subject—naturally not Math for Computer Science—in which 10% of the
assigned problems contain errors. If you ask a Teaching Assistant (TA) whether a
problem has an error, then they will answer correctly 80% of the time, regardless
of whether or not a problem has an error. If you ask a lecturer, he will identify
whether or not there is an error with only 75% accuracy.

We formulate this as an experiment of choosing one problem randomly and ask-
ing a particular TA and Lecturer about it. Define the following events:

E WWD Œthe problem has an error�;

T WWD Œthe TA says the problem has an error�;

L WWD Œthe lecturer says the problem has an error�:

(a) Translate the description above into a precise set of equations involving con-
ditional probabilities among the events E, T and L.
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(b) Suppose you have doubts about a problem and ask a TA about it, and they tell
you that the problem is correct. To double-check, you ask a lecturer, who says that
the problem has an error. Assuming that the correctness of the lecturer’s answer
and the TA’s answer are independent of each other, regardless of whether there is
an error, what is the probability that there is an error in the problem?

(c) Is event T independent of event L (that is, Pr
�
T j L

�
D PrŒT �)? First, give

an argument based on intuition, and then calculate both probabilities to verify your
intuition.

Problem 18.11.
Suppose you repeatedly flip a fair coin until you see the sequence HTT or HHT.
What is the probability you see the sequence HTT first?

Hint: Try to find the probability that HHT comes before HTT conditioning on
whether you first toss an H or a T. The answer is not 1=2.

Problem 18.12.
A 52-card deck is thoroughly shuffled and you are dealt a hand of 13 cards.

(a) If you have one ace, what is the probability that you have a second ace?

(b) If you have the ace of spades, what is the probability that you have a second
ace? Remarkably, the answer is different from part (a).

Problem 18.13.
Suppose PrŒ�� W S ! Œ0; 1� is a probability function on a sample space S and let B
be an event such that PrŒB� > 0. Define a function PrB Œ�� on outcomes ! 2 S by
the rule:

PrB Œ!� WWD

(
PrŒ!�=PrŒB� if ! 2 B;
0 if ! … B:

(18.9)

(a) Prove that PrB Œ�� is also a probability function on S according to Defini-
tion 17.5.2.

(b) Prove that

PrB ŒA� D
PrŒA \ B�

PrŒB�

for all A � S.
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(c) Explain why the Disjoint Sum Rule carries over for conditional probabilities,
namely,

Pr
�
C [D j B

�
D Pr

�
C j B

�
C Pr

�
D j B

�
.C;D disjoint/:

Give examples of several further such rules.

Problem 18.14.
Professor Meyer has a deck of 52 randomly shuffled playing cards, 26 red, 26 black.
He proposes the following game: he will repeatedly draw a card off the top of the
deck and turn it face up so that you can see it. At any point while there are still
cards left in the deck, you may choose to stop, and he will turn over the next card.
If the turned up card is black you win, and otherwise you lose. Either way, the
game ends.

Suppose that after drawing off some top cards without stopping, the deck is left
with r red cards and b black cards.
(a) Show that if you choose to stop at this point, the probability of winning is
b=.r C b/.

(b) Prove if you choose not to stop at this point, the probability of winning is still
b=.r C b/, regardless of your stopping strategy for the rest of the game.

Hint: Induction on r C b.

Exam Problems

Problem 18.15.
Sally Smart just graduated from high school. She was accepted to three reputable
colleges.

� With probability 4=12, she attends Yale.

� With probability 5=12, she attends MIT.

� With probability 3=12, she attends Little Hoop Community College.

Sally is either happy or unhappy in college.

� If she attends Yale, she is happy with probability 4=12.

� If she attends MIT, she is happy with probability 7=12.

� If she attends Little Hoop, she is happy with probability 11=12.
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(a) A tree diagram to help Sally project her chance at happiness is shown below.
On the diagram, fill in the edge probabilities, and at each leaf write the probability
of the corresponding outcome.

Yale

MIT

Little Hoop

happy

unhappy

happy

happy

unhappy

unhappy

(b) What is the probability that Sally is happy in college?

(c) What is the probability that Sally attends Yale, given that she is happy in col-
lege?

(d) Show that the event that Sally attends Yale is not independent of the event that
she is happy.

(e) Show that the event that Sally attends MIT is independent of the event that she
is happy.

Problem 18.16.
Here’s a variation of Monty Hall’s game: the contestant still picks one of three
doors, with a prize randomly placed behind one door and goats behind the other
two. But now, instead of always opening a door to reveal a goat, Monty instructs
Carol to randomly open one of the two doors that the contestant hasn’t picked. This
means she may reveal a goat, or she may reveal the prize. If she reveals the prize,
then the entire game is restarted, that is, the prize is again randomly placed behind
some door, the contestant again picks a door, and so on until Carol finally picks a
door with a goat behind it. Then the contestant can choose to stick with his original
choice of door or switch to the other unopened door. He wins if the prize is behind
the door he finally chooses.

To analyze this setup, we define two events:
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GP : The event that the contestant guesses the door with the prize behind it on his
first guess.

OP : The event that the game is restarted at least once. Another way to describe
this is as the event that the door Carol first opens has a prize behind it.

Give the values of the following probabilities:

(a) PrŒGP �

(b) Pr
�
OP

ˇ̌
GP

�
(c) PrŒOP �

(d) the probability that the game will continue forever

(e) When Carol finally picks the goat, the contestant has the choice of sticking or
switching. Let’s say that the contestant adopts the strategy of sticking. Let W be
the event that the contestant wins with this strategy, and let w WWD PrŒW �. Express
the following conditional probabilities as simple closed forms in terms of w.

i) Pr
�
W j GP

�
ii) Pr

�
W
ˇ̌
GP \OP

�
iii) Pr

�
W
ˇ̌
GP \OP

�
(f) What is the value of PrŒW �?

(g) For any final outcome where the contestant wins with a “stick” strategy, he
would lose if he had used a “switch” strategy, and vice versa. In the original Monty
Hall game, we concluded immediately that the probability that he would win with
a “switch” strategy was 1 � PrŒW �. Why isn’t this conclusion quite as obvious for
this new, restartable game? Is this conclusion still sound? Briefly explain.

Problem 18.17.
There are two decks of cards, the red deck and the blue deck. They differ slightly
in a way that makes drawing the eight of hearts slightly more likely from the red
deck than from the blue deck.

One of the decks is randomly chosen and hidden in a box. You reach in the
box and randomly pick a card that turns out to be the eight of hearts. You believe
intuitively that this makes the red deck more likely to be in the box than the blue
deck.
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Your intuitive judgment about the red deck can be formalized and verified using
some inequalities between probabilities and conditional probabilities involving the
events

R WWD Red deck is in the box;

B WWD Blue deck is in the box;

E WWD Eight of hearts is picked from the deck in the box:

(a) State an inequality between probabilities and/or conditional probabilities that
formalizes the assertion, “picking the eight of hearts from the red deck is more
likely than from the blue deck.”

(b) State a similar inequality that formalizes the assertion “picking the eight of
hearts from the deck in the box makes the red deck more likely to be in the box
than the blue deck.”

(c) Assuming that initially each deck is equally likely to be the one in the box,
prove that the inequality of part (a) implies the inequality of part (b).

(CONTINUED ON NEXT PAGE)

(d) Suppose you couldn’t be sure that the red deck and blue deck initially were
equally likely to be in the box. Could you still conclude that picking the eight of
hearts from the deck in the box makes the red deck more likely to be in the box
than the blue deck? Briefly explain.

Problem 18.18.
A flip of Coin 1 is x times as likely to come up Heads as a flip of Coin 2. A
biased random choice of one of these coins will be made, where the probability of
choosing Coin 1 is w times that of Coin 2.
(a) Restate the information above as equations between conditional probabilities

involving the events

C1 WWD Coin 1 was chosen;

C2 WWD Coin 2 was chosen;

H WWD the chosen coin came up Heads:

(b) State an inequality involving conditional probabilities of the above events that
formalizes the assertion “Given that the chosen coin came up Heads, the chosen
coin is more likely to have been Coin 1 than Coin 2.”
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(c) Prove that, given that the chosen coin came up Heads, the chosen coin is more
likely to have been Coin 1 than Coin 2 iff

wx > 1:

Problem 18.19.
There is an unpleasant, degenerative disease called Beaver Fever which causes peo-
ple to tell math jokes unrelentingly in social settings, believing other people will
think they’re funny. Fortunately, Beaver Fever is rare, afflicting only about 1 in
1000 people. Doctor Meyer has a fairly reliable diagnostic test to determine who is
going to suffer from this disease:

� If a person will suffer from Beaver Fever, the probability that Dr. Meyer
diagnoses this is 0.99.

� If a person will not suffer from Beaver Fever, the probability that Dr. Meyer
diagnoses this is 0.97.

LetB be the event that a randomly chosen person will suffer Beaver Fever, and Y
be the event that Dr. Meyer’s diagnosis is “Yes, this person will suffer from Beaver
Fever,” with B and Y being the complements of these events.

(a) The description above explicitly gives the values of the following quantities.
What are their values?

PrŒB� Pr
�
Y j B

�
Pr
�
Y
ˇ̌
B
�

(b) Write formulas for PrŒB� and Pr
�
Y
ˇ̌
B
�

solely in terms of the explicitly given
quantities in part (a)—literally use their expressions, not their numeric values.

(c) Write a formula for the probability that Dr. Meyer says a person will suffer
from Beaver Fever solely in terms of PrŒB�, PrŒB�, Pr

�
Y j B

�
and Pr

�
Y
ˇ̌
B
�
.

(d) Write a formula solely in terms of the expressions given in part (a) for the
probability that a person will suffer Beaver Fever given that Doctor Meyer says
they will. Then calculate the numerical value of the formula.

Suppose there was a vaccine to prevent Beaver Fever, but the vaccine was expen-
sive or slightly risky itself. If you were sure you were going to suffer from Beaver
Fever, getting vaccinated would be worthwhile, but even if Dr. Meyer diagnosed
you as a future sufferer of Beaver Fever, the probability you actually will suffer
Beaver Fever remains low (about 1/32 by part (d)).
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In this case, you might sensibly decide not to be vaccinated—after all, Beaver
Fever is not that bad an affliction. So the diagnostic test serves no purpose in your
case. You may as well not have bothered to get diagnosed. Even so, the test may
be useful:

(e) Suppose Dr. Meyer had enough vaccine to treat 2% of the population. If he
randomly chose people to vaccinate, he could expect to vaccinate only 2% of the
people who needed it. But by testing everyone and only vaccinating those diag-
nosed as future sufferers, he can expect to vaccinate a much larger fraction people
who were going to suffer from Beaver Fever. Estimate this fraction.

Problem 18.20.
Suppose that Let’s Make a Deal is played according to slightly different rules and
with a red goat and a blue goat. There are three doors, with a prize hidden behind
one of them and the goats behind the others. No doors are opened until the con-
testant makes a final choice to stick or switch. The contestant is allowed to pick a
door and ask a certain question that the host then answers honestly. The contestant
may then stick with their chosen door, or switch to either of the other doors.

(a) If the contestant asks “is there is a goat behind one of the unchosen doors?”
and the host answers “yes,” is the contestant more likely to win the prize if they
stick, switch, or does it not matter? Clearly identify the probability space of out-
comes and their probabilities you use to model this situation. What is the contes-
tant’s probability of winning if he uses the best strategy?

(b) If the contestant asks “is the red goat behind one of the unchosen doors?” and
the host answers “yes,” is the contestant more likely to win the prize if they stick,
switch, or does it not matter? Clearly identify the probability space of outcomes
and their probabilities you use to model this situation. What is the contestant’s
probability of winning if he uses the best strategy?

Problem 18.21.
You are organizing a neighborhood census and instruct your census takers to knock
on doors and note the sex of any child that answers the knock. Assume that there
are two children in every household, that a random child is equally likely to be a
girl or a boy, and that the two children in a household are equally likely to be the
one that opens the door.

A sample space for this experiment has outcomes that are triples whose first
element is either B or G for the sex of the elder child, whose second element is



“mcs” — 2017/6/5 — 19:42 — page 805 — #813

18.9. Probability versus Confidence 805

either B or G for the sex of the younger child, and whose third element is E or Y
indicating whether the elder child or younger child opened the door. For example,
.B;G;Y/ is the outcome that the elder child is a boy, the younger child is a girl, and
the girl opened the door.

(a) Let O be the event that a girl opened the door, and let T be the event that the
household has two girls. List the outcomes in O and T.

(b) What is the probability Pr
�
T j O

�
, that both children are girls, given that a

girl opened the door?

(c) What mistake is made in the following argument? (Note: merely stating the
correct probability is not an explanation of the mistake.)

If a girl opens the door, then we know that there is at least one girl in the
household. The probability that there is at least one girl is

1 � PrŒboth children are boys� D 1 � .1=2 � 1=2/ D 3=4:

So,

Pr
�
T j there is at least one girl in the household

�
D

PrŒT \ there is at least one girl in the household�
PrŒthere is at least one girl in the household�

D
PrŒT �

PrŒthere is at least one girl in the household�
D .1=4/=.3=4/ D 1=3:

Therefore, given that a girl opened the door, the probability that there
are two girls in the household is 1/3.

Problem 18.22.
A guard is going to release exactly two of the three prisoners, Sauron, Voldemort,
and Bunny Foo Foo, and he’s equally likely to release any set of two prisoners.
(a) What is the probability that Voldemort will be released?

The guard will truthfully tell Voldemort the name of one of the prisoners to be
released. We’re interested in the following events:

V : Voldemort is released.
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“F ”: The guard tells Voldemort that Foo Foo will be released.

“S”: The guard tells Voldemort that Sauron will be released.

The guard has two rules for choosing whom he names:

� never say that Voldemort will be released,

� if both Foo Foo and Sauron are getting released, say “Foo Foo.”

(b) What is Pr
�
V j “F ”

�
?

(c) What is Pr
�
V j “S”

�
?

(d) Show how to use the Law of Total Probability to combine your answers to
parts (b) and (c) to verify that the result matches the answer to part (a).

Problem 18.23.
We are interested in paths in the plane starting at .0; 0/ that go one unit right or one
unit up at each step. To model this, we use a state machine whose states are N�N,
whose start state is .0; 0/, and whose transitions are

.x; y/! .x C 1; y/;

.x; y/! .x; y C 1/:

(a) How many length n paths are there starting from the origin?

(b) How many states are reachable in exactly n steps?

(c) How many states are reachable in at most n steps?

(d) If transitions occur independently at random, going right with probability p
and up with probability q WWD 1�p at each step, what is the probability of reaching
position .x; y/?

(e) What is the probability of reaching state .x; y/ given that the path to .x; y/
reached .m; n/ before getting to .x; y/?

(f) Show that the probability that a path ending at .x; y/ went through .m; n/ is
the same for all p.
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Problems for Section 18.6

Practice Problems

Problem 18.24.
Define the events A;FEE ; FCS ;MEE , and MCS as in Section 18.6.

In these terms, the plaintiff in a discrimination suit against a university makes
the argument that in both departments, the probability that a female is admitted is
less than the probability for a male. That is,

Pr
�
A j FEE

�
< Pr

�
A j MEE

�
and (18.10)

Pr
�
A j FCS

�
< Pr

�
A j MCS

�
: (18.11)

The university’s defence attorneys retort that overall, a female applicant is more
likely to be admitted than a male, namely, that

Pr
�
A j FEE [ FCS

�
> Pr

�
A j MEE [MCS

�
: (18.12)

The judge then interrupts the trial and calls the plaintiff and defence attorneys to
a conference in his office to resolve what he thinks are contradictory statements of
facts about the admission data. The judge points out that:

Pr
�
A j FEE [ FCS

�
D Pr

�
A j FEE

�
C Pr

�
A j FCS

�
(because FEE and FCS are disjoint)

< Pr
�
A j MEE

�
C Pr

�
A j MCS

�
(by (18.10) and (18.11))

D Pr
�
A j MEE [MCS

�
(because MEE and MCS are disjoint)

so
Pr
�
A j FEE [ FCS

�
< Pr

�
A j MEE [MCS

�
;

which directly contradicts the university’s position (18.12)!
Of course the judge is mistaken; an example where the plaintiff and defence

assertions are all true appears in Section 18.6. What is the mistake in the judge’s
proof?

Problems for Section 18.7

Practice Problems

Problem 18.25.
Outside of their hum-drum duties as Math for Computer Science Teaching Assis-
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tants, Oscar is trying to learn to levitate using only intense concentration and Liz is
trying to become the world champion flaming torch juggler. Suppose that Oscar’s
probability of success is 1=6, Liz’s chance of success is 1=4, and these two events
are independent.

(a) If at least one of them succeeds, what is the probability that Oscar learns to
levitate?

(b) If at most one of them succeeds, what is the probability that Liz becomes the
world flaming torch juggler champion?

(c) If exactly one of them succeeds, what is the probability that it is Oscar?

Problem 18.26.
What is the smallest size sample space in which there are two independent events,
neither of which has probability zero or probability one? Explain.

Problem 18.27.
Give examples of event A;B;E such that

(a) A and B are independent, and are also conditionally independent given E, but
are not conditionally independent given E. That is,

PrŒA \ B� D PrŒA�PrŒB�;

Pr
�
A \ B j E

�
D Pr

�
A j E

�
Pr
�
B j E

�
;

Pr
�
A \ B

ˇ̌
E
�
¤ Pr

�
A
ˇ̌
E
�

Pr
�
B
ˇ̌
E
�
:

Hint: Let S D f1; 2; 3; 4g.

(b) A and B are conditionally independent given E, or given E, but are not inde-
pendent. That is,

Pr
�
A \ B j E

�
D Pr

�
A j E

�
Pr
�
B j E

�
;

Pr
�
A \ B

ˇ̌
E
�
D Pr

�
A
ˇ̌
E
�

Pr
�
B
ˇ̌
E
�
;

PrŒA \ B� ¤ PrŒA�PrŒB�:

Hint: Let S D f1; 2; 3; 4; 5g.
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An alternative example is

A WWD f1g

B WWD f1; 2g

E WWD f3; 4; 5g:

Class Problems

Problem 18.28.
Event E is evidence in favor of event H when Pr

�
H j E

�
> PrŒH �, and it is

evidence against H when Pr
�
H j E

�
< PrŒH �.

(a) Give an example of events A;B;H such that A and B are independent, both
are evidence for H , but A [ B is evidence against H .

Hint: Let S D Œ1::8�

(b) Prove E is evidence in favor of H iff E is evidence against H .

Problem 18.29.
Let G be a simple graph with n vertices. Let “A.u; v/” mean that vertices u and v
are adjacent, and let “W.u; v/” mean that there is a length-two walk between u and
v.
(a) Explain why W.u; u/ holds iff 9v: A.u; v/.

(b) Write a predicate-logic formula defining W.u; v/ in terms of the predicate
A.:; :/ when u ¤ v.

There are e WWD
�
n
2

�
possible edges between the n vertices of G. Suppose the

actual edges of E.G/ are chosen with randomly from this set of e possible edges.
Each edge is chosen with probability p, and the choices are mutually independent.
(c) Write a simple formula in terms of p; e, and k for PrŒjE.G/j D k�.

(d) Write a simple formula in terms of p and n for PrŒW.u; u/�.
Let w, x, y and z be four distinct vertices.
Because edges are chosen mutually independently, events that depend on disjoint

sets of edges will be mutually independent. For example, the events

A.w; y/ AND A.y; x/

and
A.w; z/ AND A.z; x/

are independent since hw—yi ; hy—xi ; hw—zi ; hz—xi are four distinct edges.
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(e) Let
r WWD PrŒNOT.W.w; x//�; (18.13)

where w and x are distinct vertices. Write a simple formula for r in terms of n and
p.

Hint: Different length-two paths between x and y don’t share any edges.

(f) Vertices x and y being on a three-cycle can be expressed simply as

A.x; y/ AND W.x; y/:

Write a simple expression in terms of p and r for the probability that x and y lie
on a three-cycle in G.

(g) Are W.w; x/ and W.y; z/ independent events? Briefly comment (proof not
required).

Problems for Section 18.8

Practice Problems

Problem 18.30.
Suppose A, B and C are mutually independent events, what about A \ B and
B [ C ?

Class Problems

Problem 18.31.
Suppose you flip three fair, mutually independent coins. Define the following
events:

� Let A be the event that the first coin is heads.

� Let B be the event that the second coin is heads.

� Let C be the event that the third coin is heads.

� Let D be the event that an even number of coins are heads.

(a) Use the four step method to determine the probability space for this experiment
and the probability of each of A;B;C;D.

(b) Show that these events are not mutually independent.
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(c) Show that they are 3-way independent.

Problem 18.32.
Let A;B;C be events. For each of the following statements, prove it or give a
counterexample.
(a) If A is independent of B , then A is also independent of B .

(b) If A is independent of B , and A is independent of C , then A is independent of
B \ C .

Hint: Choose A;B;C pairwise but not 3-way independent.

(c) If A is independent of B , and A is independent of C , then A is independent of
B [ C .

Hint: Part (b).

(d) If A is independent of B , and A is independent of C , and A is independent of
B \ C , then A is independent of B [ C .

Problem 18.33.
Let A;B;C;D be events. Describe counterexamples showing that the following
claims are false.
(a)

False Claim. If A and B are independent given C , and are also independent given
D, then A and B are independent given C [D.

(b)
False Claim. If A and B are independent given C , and are also independent given
D, then A and B are independent given C \D.

Hint: Choose A;B;C;D 3-way but not 4-way independent.

so A and B are not independent given C \D.

Homework Problems

Problem 18.34.
Describe events A, B and C that:

� satisfy the “product rule,” namely,

PrŒA \ B \ C � D PrŒA� � PrŒB� � PrŒC �;
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� no two out of the three events are independent.

Hint: Choose A;B;C events over the uniform probability space on Œ1::6�.

Exam Problems

Problem 18.35.
A classroom has sixteen desks in a 4 � 4 arrangement as shown below.

If two desks are next to each other, vertically or horizontally, they are called an
adjacent pair. So there are three horizontally adjacent pairs in each row, for a total
of twelve horizontally adjacent pairs. Likewise, there are twelve vertically adjacent
pairs.

Boys and girls are assigned to desks mutually independently, with probability
p > 0 of a desk being occupied by a boy and probability q WWD 1 � p > 0 of being
occupied by a girl. An adjacent pair D of desks is said to have a flirtation when
there is a boy at one desk and a girl at the other desk. Let FD be the event that D
has a flirtation.

(a) Different pairsD and E of adjacent desks are said to overlap when they share
a desk. For example, the first and second pairs in each row overlap, and so do the
second and third pairs, but the first and third pairs do not overlap. Prove that if D
and E overlap, then FD and FE are independent events iff p D q.

(b) Find four pairs of desksD1;D2;D3;D4 and explain whyFD1
; FD2

; FD3
; FD4

are not mutually independent (even if p D q D 1=2).



“mcs” — 2017/6/5 — 19:42 — page 813 — #821

18.9. Probability versus Confidence 813

Problems for Section 18.9

Problem 18.36.
An International Journal of Pharmacological Testing has a policy of publishing
drug trial results only if the conclusion holds at the 95% confidence level. The ed-
itors and reviewers always carefully check that any results they publish came from
a drug trial that genuinely deserved this level of confidence. They are also careful
to check that trials whose results they publish have been conducted independently
of each other.

The editors of the Journal reason that under this policy, their readership can be
confident that at most 5% of the published studies will be mistaken. Later, the
editors are embarrassed—and astonished—to learn that every one of the 20 drug
trial results they published during the year was wrong. The editors thought that
because the trials were conducted independently, the probability of publishing 20
wrong results was negligible, namely, .1=20/20 < 10�25.

Write a brief explanation to these befuddled editors explaining what’s wrong
with their reasoning and how it could be that all 20 published studies were wrong.

Hint: xkcd comic: “significant” xkcd.com/882/

Practice Problems

Problem 18.37.
A somewhat reliable allergy test has the following properties:

� If you are allergic, there is a 10% chance that the test will say you are not.

� If you are not allergic, there is a 5% chance that the test will say you are.

(a) The test results are correct at what confidence level?

(b) What is the Bayes factor for being allergic when the test diagnoses a person as
allergic?

(c) What can you conclude about the odds of a random person being allergic given
that the test diagnoses them as allergic? Can you determine if the odds are better
than even?

Suppose that your doctor tells you that because the test diagnosed you as allergic,
and about 25% of people are allergic, the odds are six to one that you are allergic.
(d) How would your doctor calculate these odds of being allergic based on what’s

known about the allergy test?

http://xkcd.com/882/
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(e) Another doctor reviews your test results and medical record and says your
odds of being allergic are really much higher, namely thirty-six to one. Briefly
explain how two conscientious doctors could disagree so much. Is there a way you
could determine your actual odds of being allergic?
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19 Random Variables
Thus far, we have focused on probabilities of events. For example, we computed
the probability that you win the Monty Hall game or that you have a rare medical
condition given that you tested positive. But, in many cases we would like to know
more. For example, how many contestants must play the Monty Hall game until
one of them finally wins? How long will this condition last? How much will I lose
gambling with strange dice all night? To answer such questions, we need to work
with random variables.

19.1 Random Variable Examples

Definition 19.1.1. A random variable R on a probability space is a total function
whose domain is the sample space.

The codomain of R can be anything, but will usually be a subset of the real
numbers. Notice that the name “random variable” is a misnomer; random variables
are actually functions.

For example, suppose we toss three independent, unbiased coins. Let C be the
number of heads that appear. Let M D 1 if the three coins come up all heads or all
tails, and letM D 0 otherwise. Now every outcome of the three coin flips uniquely
determines the values of C andM . For example, if we flip heads, tails, heads, then
C D 2 and M D 0. If we flip tails, tails, tails, then C D 0 and M D 1. In effect,
C counts the number of heads, and M indicates whether all the coins match.

Since each outcome uniquely determines C andM , we can regard them as func-
tions mapping outcomes to numbers. For this experiment, the sample space is:

S D fHHH;HHT;HTH;HT T; THH; THT; T TH; T T T g:

Now C is a function that maps each outcome in the sample space to a number as
follows:

C.HHH/ D 3 C.THH/ D 2

C.HHT / D 2 C.THT / D 1

C.HTH/ D 2 C.T TH/ D 1

C.HT T / D 1 C.T T T / D 0:
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Similarly, M is a function mapping each outcome another way:

M.HHH/ D 1 M.THH/ D 0

M.HHT / D 0 M.THT / D 0

M.HTH/ D 0 M.T TH/ D 0

M.HT T / D 0 M.T T T / D 1:

So C and M are random variables.

19.1.1 Indicator Random Variables

An indicator random variable is a random variable that maps every outcome to
either 0 or 1. Indicator random variables are also called Bernoulli variables. The
random variableM is an example. If all three coins match, thenM D 1; otherwise,
M D 0.

Indicator random variables are closely related to events. In particular, an in-
dicator random variable partitions the sample space into those outcomes mapped
to 1 and those outcomes mapped to 0. For example, the indicator M partitions the
sample space into two blocks as follows:

HHH T T T„ ƒ‚ …
M D 1

HHT HTH HT T THH THT T TH„ ƒ‚ …
M D 0

:

In the same way, an event E partitions the sample space into those outcomes
in E and those not in E. So E is naturally associated with an indicator random
variable, IE , where IE .!/ D 1 for outcomes ! 2 E and IE .!/ D 0 for outcomes
! … E. This means that event E is the same as the event ŒIE D 1�. For example
the variable M above is really just the indicator variable IE , where E is the event
that all three coins match.

19.1.2 Random Variables and Events

There is a strong relationship between events and more general random variables
as well. A random variable that takes on several values partitions the sample space
into several blocks. For example, C partitions the sample space as follows:

T T T„ƒ‚…
C D 0

T TH THT HT T„ ƒ‚ …
C D 1

THH HTH HHT„ ƒ‚ …
C D 2

HHH„ƒ‚…
C D 3

:

Each block is a subset of the sample space and is therefore an event. So the assertion
that C D 2 defines the event

ŒC D 2� D fTHH;HTH;HHT g;
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and this event has probability

PrŒC D 2� D PrŒTHH�C PrŒHTH�C PrŒHHT � D
1

8
C
1

8
C
1

8
D 3=8:

Likewise ŒM D 1� is the event fT T T;HHH g and has probability 1=4.
More generally, any assertion about the values of random variables defines an

event. For example, the assertion that C � 1 defines

ŒC � 1� D fT T T; T TH; THT;HT T g;

and so PrŒC � 1� D 1=2.
Another example is the assertion that C �M is an odd number. If you think about

it for a minute, you’ll realize that this is an obscure way of saying that all three
coins came up heads, namely,

ŒC �M is odd� D fHHH g:

19.2 Independence

The notion of independence carries over from events to random variables as well.
Random variables R1 and R2 are independent iff for all x1; x2, the two events

ŒR1 D x1� and ŒR2 D x2�

are independent.
For example, are C and M independent? Intuitively, the answer should be “no.”

The number of heads C completely determines whether all three coins match; that
is, whether M D 1. But, to verify this intuition, we must find some x1; x2 2 R
such that:

PrŒC D x1 AND M D x2� ¤ PrŒC D x1� � PrŒM D x2�:

One appropriate choice of values is x1 D 2 and x2 D 1. In this case, we have:

PrŒC D 2 AND M D 1� D 0 ¤
1

4
�
3

8
D PrŒM D 1� � PrŒC D 2�:

The first probability is zero because we never have exactly two heads (C D 2)
when all three coins match (M D 1). The other two probabilities were computed
earlier.
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On the other hand, let H1 be the indicator variable for the event that the first flip
is a Head, so

ŒH1 D 1� D fHHH;HTH;HHT;HT T g:

Then H1 is independent of M , since

PrŒM D 1� D 1=4 D Pr
�
M D 1 j H1 D 1

�
D Pr

�
M D 1 j H1 D 0

�
PrŒM D 0� D 3=4 D Pr

�
M D 0 j H1 D 1

�
D Pr

�
M D 0 j H1 D 0

�
This example is an instance of:

Lemma 19.2.1. Two events are independent iff their indicator variables are inde-
pendent.

The simple proof is left to Problem 19.1.
Intuitively, the independence of two random variables means that knowing some

information about one variable doesn’t provide any information about the other
one. We can formalize what “some information” about a variable R is by defining
it to be the value of some quantity that depends on R. This intuitive property of
independence then simply means that functions of independent variables are also
independent:

Lemma 19.2.2. Let R and S be independent random variables, and f and g be
functions such that domain.f / D codomain.R/ and domain.g/ D codomain.S/.
Then f .R/ and g.S/ are independent random variables.

The proof is another simple exercise left to Problem 19.33.
As with events, the notion of independence generalizes to more than two random

variables.

Definition 19.2.3. Random variables R1; R2; : : : ; Rn are mutually independent iff
for all x1; x2; : : : ; xn, the n events

ŒR1 D x1�; ŒR2 D x2�; : : : ; ŒRn D xn�

are mutually independent. They are k-way independent iff every subset of k of
them are mutually independent.

Lemmas 19.2.1 and 19.2.2 both extend straightforwardly to k-way independent
variables.
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19.3 Distribution Functions

A random variable maps outcomes to values. The probability density function,
PDFR.x/, of a random variable R measures the probability that R takes the value
x, and the closely related cumulative distribution function CDFR.x/ measures the
probability that R � x. Random variables that show up for different spaces of
outcomes often wind up behaving in much the same way because they have the
same probability of taking different values, that is, because they have the same
pdf/cdf.

Definition 19.3.1. Let R be a random variable with codomain V . The probability
density function of R is a function PDFR W V ! Œ0; 1� defined by:

PDFR.x/ WWD

(
PrŒR D x� if x 2 range.R/;
0 if x … range.R/:

If the codomain is a subset of the real numbers, then the cumulative distribution
function is the function CDFR W R! Œ0; 1� defined by:

CDFR.x/ WWD PrŒR � x�:

A consequence of this definition is thatX
x2range.R/

PDFR.x/ D 1:

This is because R has a value for each outcome, so summing the probabilities over
all outcomes is the same as summing over the probabilities of each value in the
range of R.

As an example, suppose that you roll two unbiased, independent, 6-sided dice.
Let T be the random variable that equals the sum of the two rolls. This random
variable takes on values in the set V D f2; 3; : : : ; 12g. A plot of the probability
density function for T is shown in Figure 19.1. The lump in the middle indicates
that sums close to 7 are the most likely. The total area of all the rectangles is 1
since the dice must take on exactly one of the sums in V D f2; 3; : : : ; 12g.

The cumulative distribution function for T is shown in Figure 19.2: The height
of the i th bar in the cumulative distribution function is equal to the sum of the
heights of the leftmost i bars in the probability density function. This follows from
the definitions of pdf and cdf:

CDFR.x/ D PrŒR � x� D
X
y�x

PrŒR D y� D
X
y�x

PDFR.y/:
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3=36

6=36

x 2 V

2 3 4 5 6 7 8 9 10 11 12

PDFT.x/

Figure 19.1 The probability density function for the sum of two 6-sided dice.

0

1=2

1

x 2 V

0 1 2 3 4 5 6 7 8 9 10 11 12

: : :

CDFT.x/

Figure 19.2 The cumulative distribution function for the sum of two 6-sided dice.
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It also follows from the definition that

lim
x!1

CDFR.x/ D 1 and lim
x!�1

CDFR.x/ D 0:

Both PDFR and CDFR capture the same information aboutR, so take your choice.
The key point here is that neither the probability density function nor the cumulative
distribution function involves the sample space of an experiment.

One of the really interesting things about density functions and distribution func-
tions is that many random variables turn out to have the same pdf and cdf. In other
words, even thoughR and S are different random variables on different probability
spaces, it is often the case that

PDFR D PDFS :

In fact, some pdf’s are so common that they are given special names. For exam-
ple, the most important distributions in computer science arguably are the Bernoulli
distribution, the Uniform distribution, the Binomial distribution, and the Geomet-
ric distribution. We look more closely at these common distributions in the next
several sections.

19.3.1 Bernoulli Distributions

A Bernoulli distribution is the distribution function for a Bernoulli variable. Specif-
ically, the Bernoulli distribution has a probability density function of the form
fp W f0; 1g ! Œ0; 1� where

fp.0/ D p; and

fp.1/ D q;

for some p 2 Œ0; 1� with q WWD 1 � p. The corresponding cumulative distribution
function is Fp W R! Œ0; 1� where

Fp.x/ WWD

8̂<̂
:
0 if x < 0
p if 0 � x < 1
1 if 1 � x:

19.3.2 Uniform Distributions

A random variable that takes on each possible value in its codomain with the same
probability is said to be uniform. If the codomain V has n elements, then the
uniform distribution has a pdf of the form

f W V ! Œ0; 1�
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where
f .v/ D

1

n

for all v 2 V .
If the elements of V in increasing order are a1; a2; : : : ; an, then the cumulative

distribution function would be F W R! Œ0; 1� where

F.x/ WWD

8̂<̂
:
0 if x < a1
k=n if ak � x < akC1 for 1 � k < n
1 if an � x:

Uniform distributions come up all the time. For example, the number rolled on
a fair die is uniform on the set f1; 2; : : : ; 6g. An indicator variable is uniform when
its pdf is f1=2.

19.3.3 The Numbers Game

Enough definitions—let’s play a game! We have two envelopes. Each contains
an integer in the range 0; 1; : : : ; 100, and the numbers are distinct. To win the
game, you must determine which envelope contains the larger number. To give
you a fighting chance, we’ll let you peek at the number in one envelope selected
at random. Can you devise a strategy that gives you a better than 50% chance of
winning?

For example, you could just pick an envelope at random and guess that it contains
the larger number. But this strategy wins only 50% of the time. Your challenge is
to do better.

So you might try to be more clever. Suppose you peek in one envelope and see
the number 12. Since 12 is a small number, you might guess that the number in the
other envelope is larger. But perhaps we’ve been tricky and put small numbers in
both envelopes. Then your guess might not be so good!

An important point here is that the numbers in the envelopes may not be random.
We’re picking the numbers and we’re choosing them in a way that we think will
defeat your guessing strategy. We’ll only use randomization to choose the numbers
if that serves our purpose: making you lose!

Intuition Behind the Winning Strategy

People are surprised when they first learn that there is a strategy that wins more
than 50% of the time, regardless of what numbers we put in the envelopes.

Suppose that you somehow knew a number x that was in between the numbers
in the envelopes. Now you peek in one envelope and see a number. If it is bigger
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than x, then you know you’re peeking at the higher number. If it is smaller than x,
then you’re peeking at the lower number. In other words, if you know a number x
between the numbers in the envelopes, then you are certain to win the game.

The only flaw with this brilliant strategy is that you do not know such an x. This
sounds like a dead end, but there’s a cool way to salvage things: try to guess x!
There is some probability that you guess correctly. In this case, you win 100%
of the time. On the other hand, if you guess incorrectly, then you’re no worse off
than before; your chance of winning is still 50%. Combining these two cases, your
overall chance of winning is better than 50%.

Many intuitive arguments about probability are wrong despite sounding persua-
sive. But this one goes the other way: it may not convince you, but it’s actually
correct. To justify this, we’ll go over the argument in a more rigorous way—and
while we’re at it, work out the optimal way to play.

Analysis of the Winning Strategy

For generality, suppose that we can choose numbers from the integer interval Œ0::n�.
Call the lower number L and the higher number H .

Your goal is to guess a number x between L and H . It’s simplest if x does not
equal L or H , so you should select x at random from among the half-integers:

1

2
;
3

2
;
5

2
; : : : ;

2n � 1

2

But what probability distribution should you use?
The uniform distribution—selecting each of these half-integers with equal probability—

turns out to be your best bet. An informal justification is that if we figured out that
you were unlikely to pick some number—say 501

2
—then we’d always put 50 and 51

in the envelopes. Then you’d be unlikely to pick an x between L andH and would
have less chance of winning.

After you’ve selected the number x, you peek into an envelope and see some
number T . If T > x, then you guess that you’re looking at the larger number.
If T < x, then you guess that the other number is larger.

All that remains is to determine the probability that this strategy succeeds. We
can do this with the usual four step method and a tree diagram.

Step 1: Find the sample space.
You either choose x too low (< L), too high (> H ), or just right (L < x < H ).
Then you either peek at the lower number (T D L) or the higher number (T D H ).
This gives a total of six possible outcomes, as show in Figure 19.3.

Step 2: Define events of interest.
The four outcomes in the event that you win are marked in the tree diagram.
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choices 
of x

number
peeked at

TDH

TDL

TDH

TDL

TDH

TDL

1=2

1=2

1=2

1=2

1=2

1=2

L=n

.H�L/=n

.n�H/=n

result

lose

win

win

win

win

lose

probability

L=2n

L=2n

.H�L/=2n

.H�L/=2n

.n�H/=2n

.n�H/=2n

x too low

x too high

x just right

Figure 19.3 The tree diagram for the numbers game.

Step 3: Assign outcome probabilities.
First, we assign edge probabilities. Your guess x is too low with probability L=n,
too high with probability .n �H/=n, and just right with probability .H � L/=n.
Next, you peek at either the lower or higher number with equal probability. Multi-
plying along root-to-leaf paths gives the outcome probabilities.

Step 4: Compute event probabilities.
The probability of the event that you win is the sum of the probabilities of the four
outcomes in that event:

PrŒwin� D
L

2n
C
H � L

2n
C
H � L

2n
C
n �H

2n

D
1

2
C
H � L

2n

�
1

2
C

1

2n

The final inequality relies on the fact that the higher number H is at least 1 greater
than the lower number L since they are required to be distinct.

Sure enough, you win with this strategy more than half the time, regardless of the
numbers in the envelopes! So with numbers chosen from the range 0; 1; : : : ; 100,
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you win with probability at least 1=2 C 1=200 D 50:5%. If instead we agree to
stick to numbers 0; : : : ; 10, then your probability of winning rises to 55%. By Las
Vegas standards, those are great odds.

Randomized Algorithms

The best strategy to win the numbers game is an example of a randomized algo-
rithm—it uses random numbers to influence decisions. Protocols and algorithms
that make use of random numbers are very important in computer science. There
are many problems for which the best known solutions are based on a random num-
ber generator.

For example, the most commonly-used protocol for deciding when to send a
broadcast on a shared bus or Ethernet is a randomized algorithm known as expo-
nential backoff. One of the most commonly-used sorting algorithms used in prac-
tice, called quicksort, uses random numbers. You’ll see many more examples if
you take an algorithms course. In each case, randomness is used to improve the
probability that the algorithm runs quickly or otherwise performs well.

19.3.4 Binomial Distributions

The third commonly-used distribution in computer science is the binomial distri-
bution. The standard example of a random variable with a binomial distribution is
the number of heads that come up in n independent flips of a coin. If the coin is
fair, then the number of heads has an unbiased binomial distribution, specified by
the pdf fn W Œ0::n�! Œ0; 1�:

fn.k/ WWD

 
n

k

!
2�n:

This is because there are
�
n
k

�
sequences of n coin tosses with exactly k heads, and

each such sequence has probability 2�n.
A plot of f20.k/ is shown in Figure 19.4. The most likely outcome is k D 10

heads, and the probability falls off rapidly for larger and smaller values of k. The
falloff regions to the left and right of the main hump are called the tails of the
distribution.

In many fields, including Computer Science, probability analyses come down to
getting small bounds on the tails of the binomial distribution. In the context of a
problem, this typically means that there is very small probability that something
bad happens, which could be a server or communication link overloading or a ran-
domized algorithm running for an exceptionally long time or producing the wrong
result.
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f20.k/

0:18

0:16

0:14

0:12

0:10

0:08

0:06

0:04

0:02

0

k

10 15 2050

Figure 19.4 The pdf for the unbiased binomial distribution for n D 20, f20.k/.

The tails do get small very fast. For example, the probability of flipping at most
25 heads in 100 tosses is less than 1 in 3,000,000. In fact, the tail of the distribution
falls off so rapidly that the probability of flipping exactly 25 heads is nearly twice
the probability of flipping exactly 24 heads plus the probability of flipping exactly
23 heads plus . . . the probability of flipping no heads.

The General Binomial Distribution

If the coins are biased so that each coin is heads with probability p and tails with
probability q WWD 1 � p, then the number of heads has a general binomial density
function specified by the pdf fn;p W Œ0::n�! Œ0; 1� where

fn;p.k/ D

 
n

k

!
pkqn�k : (19.1)

for some n 2 NC and p 2 Œ0; 1�. This is because there are
�
n
k

�
sequences with k

heads and n � k tails, but now pkqn�k is the probability of each such sequence.
For example, the plot in Figure 19.5 shows the probability density function

fn;p.k/ corresponding to flipping n D 20 independent coins that are heads with
probability p D 0:75. The graph shows that we are most likely to get k D 15

heads, as you might expect. Once again, the probability falls off quickly for larger
and smaller values of k.
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f20;:75.k/

0:25

0:2

0:15

0:1

0:05

0

k

10 15 2050

Figure 19.5 The pdf for the general binomial distribution fn;p.k/ for n D 20

and p D :75.

19.4 Great Expectations

The expectation or expected value of a random variable in simple cases is just an
average value. For example, the first thing you typically want to know when you
see your grade on an exam is the average score of the class. This average score is
the same as the expected score of a random student.

In general, the expected value of a random variable is the sum of all it possible
values when each value is weighted according to its probability. To make this
work, we need to be able to add values and multiply them by probabilities. This
will certainly be possible if the values are real numbers; for technical reasons, we
focus on nonnegative real values. Now we can define expected value formally as
follows:

Definition 19.4.1. If R is a nonnegative real-valued random variable defined on a
sample space S, then the expectation of R is

ExŒR� WWD
X
!2S

R.!/PrŒ!�: (19.2)
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The expectation of a random variable is also known as its mean.
From now on, we will assume our random variables are nonnegative real-valued

unless we explcitly say otherwise.
Let’s work through some examples.

19.4.1 The Expected Value of a Uniform Random Variable

Rolling a 6-sided die provides an example of a uniform random variable. Let R be
the value that comes up when you roll a fair 6-sided die. Then by (19.2), the
expected value of R is

ExŒR� D 1 �
1

6
C 2 �

1

6
C 3 �

1

6
C 4 �

1

6
C 5 �

1

6
C 6 �

1

6
D
7

2
:

This calculation shows that the name “expected” value is a little misleading; the
random variable might never actually take on that value. No one expects to roll a
31
2

on an ordinary die!
In general, ifRn is a random variable with a uniform distribution on fa1; a2; : : : ; ang,

then the expectation of Rn is simply the average of the ai ’s:

ExŒRn� D
a1 C a2 C � � � C an

n
:

19.4.2 The Expected Value of a Reciprocal Random Variable

Define a random variable S to be the reciprocal of the value that comes up when
you roll a fair 6-sided die. That is, S D 1=R where R is the value that you roll.
Now,

ExŒS� D Ex
�
1

R

�
D
1

1
�
1

6
C
1

2
�
1

6
C
1

3
�
1

6
C
1

4
�
1

6
C
1

5
�
1

6
C
1

6
�
1

6
D

49

120
:

Notice that
Ex
�
1=R

�
¤ 1=ExŒR�:

Assuming that these two quantities are equal is a common mistake.

19.4.3 The Expected Value of an Indicator Random Variable

The expected value of an indicator random variable for an event is just the proba-
bility of that event.

Lemma 19.4.2. If IA is the indicator random variable for event A, then

ExŒIA� D PrŒA�:
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Proof.

ExŒIA� D 1 � PrŒIA D 1�C 0 � PrŒIA D 0� D PrŒIA D 1�

D PrŒA�: (def of IA)

For example, if A is the event that a coin with bias p comes up heads, then
ExŒIA� D PrŒIA D 1� D p.

19.4.4 Alternate Definition of Expectation

There is another standard way to define expectation:

Theorem 19.4.3. For any random variable R,

ExŒR� D
X

x2range.R/

x � PrŒR D x�: (19.3)

The proof of Theorem 19.4.3, like many of the elementary proofs about expec-
tation in this chapter, follows by regrouping of terms in equation (19.2):

Proof. Suppose R is defined on a sample space S. Then,

ExŒR� WWD
X
!2S

R.!/PrŒ!�

D

X
x2range.R/

X
!2ŒRDx�

R.!/PrŒ!�

D

X
x2range.R/

X
!2ŒRDx�

x PrŒ!� (def of the event ŒR D x�)

D

X
x2range.R/

x

0@ X
!2ŒRDx�

PrŒ!�

1A (factoring x from the inner sum)

D

X
x2range.R/

x � PrŒR D x�: (def of PrŒR D x�)

The first equality follows because the events ŒR D x� for x 2 range.R/ partition
the sample space S, so summing over the outcomes in ŒR D x� for x 2 range.R/
is the same as summing over S. �

In general, equation (19.3) is more useful than the defining equation (19.2) for
calculating expected values. It also has the advantage that it does not depend on
the sample space, but only on the density function of the random variable. On the
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other hand, summing over all outcomes as in equation (19.2) allows easier proofs
of some basic properties of expectation.

Notice that the order in which terms appear in the sums (19.3) and (19.2) is not
specified, and the proof of Theorem 19.4.3—and lots of proofs below—involve
regrouping the terms in sums. This is OK because of a well-known property of
countable sums of nonnegative real numbers:

Theorem 19.4.4. A countable sum of nonnegative real numbers converges to the
same value, or else always diverges, regardless of the order in which the numbers
are summed.

In fact as long as reordering terms in the infinite sum (19.2) for expectation
preserves convergence, we can allow random variables R taking negative as well
as positive values. In this case, ExŒR� will be well-defined and will have all the
basic properties we establish below for nonnegative variables. But reordering does
not preserve convergence for arbitrary sums of positive and negative values (see
Problems 14.14 and 14.16), and there is no useful definition of the expectation for
arbitrary real-valued random variables.

19.4.5 Conditional Expectation

Just like event probabilities, expectations can be conditioned on some event. Given
a random variable R, the expected value of R conditioned on an event A is the
probability-weighted average value of R over outcomes in A. More formally:

Definition 19.4.5. The conditional expectation ExŒR j A� of a random variable R
given event A is:

ExŒR j A� WWD
X

r2range.R/

r � Pr
�
R D r j A

�
: (19.4)

For example, we can compute the expected value of a roll of a fair die, given that
the number rolled is at least 4. We do this by letting R be the outcome of a roll of
the die. Then by equation (19.4),

ExŒR j R � 4� D
6X
iD1

i �Pr
�
R D i j R � 4

�
D 1�0C2�0C3�0C4�1

3
C5�1

3
C6�1

3
D 5:

Conditional expectation is useful in dividing complicated expectation calcula-
tions into simpler cases. We can find a desired expectation by calculating the con-
ditional expectation in each simple case and averaging them, weighing each case
by its probability.
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For example, suppose that 49.6% of the people in the world are male and the
rest female—which is more or less true. Also suppose the expected height of a
randomly chosen male is 50 1100, while the expected height of a randomly chosen
female is 50 5:00 What is the expected height of a randomly chosen person? We can
calculate this by averaging the heights of men and women. Namely, let H be the
height (in feet) of a randomly chosen person, and letM be the event that the person
is male and F the event that the person is female. Then

ExŒH � D ExŒH jM�PrŒM �C ExŒH j F �PrŒF �

D .5C 11=12/ � 0:496C .5C 5=12/ � .1 � 0:496/

D 5:6646 : : : :

which is a little less than 5’ 8.”
This method is justified by:

Theorem 19.4.6 (Law of Total Expectation). Let R be a random variable on a
sample space S , and suppose that A1, A2, . . . , is a partition of S. Then

ExŒR� D
X
i

ExŒR j Ai �PrŒAi �:

Proof.

ExŒR� D
X

r2range.R/

r � PrŒR D r� (by 19.3)

D

X
r

r �
X
i

Pr
�
R D r j Ai

�
PrŒAi � (Law of Total Probability)

D

X
r

X
i

r � Pr
�
R D r j Ai

�
PrŒAi � (distribute constant r)

D

X
i

X
r

r � Pr
�
R D r j Ai

�
PrŒAi � (exchange order of summation)

D

X
i

PrŒAi �
X
r

r � Pr
�
R D r j Ai

�
(factor constant PrŒAi �)

D

X
i

PrŒAi �ExŒR j Ai �: (Def 19.4.5 of cond. expectation)

�

19.4.6 Geometric Distributions

A computer program crashes at the end of each hour of use with probability p, if
it has not crashed already. What is the expected time until the program crashes?
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This will be easy to figure out using the Law of Total Expectation, Theorem 19.4.6.
Specifically, we want to find ExŒC � where C is the number of hours until the first
crash. We’ll do this by conditioning on whether or not the crash occurs in the first
hour.

So define A to be the event that the system fails on the first step and A to be the
complementary event that the system does not fail on the first step. Then the mean
time to failure ExŒC � is

ExŒC � D ExŒC j A�PrŒA�C ExŒC j A�PrŒA�: (19.5)

Since A is the condition that the system crashes on the first step, we know that

ExŒC j A� D 1: (19.6)

SinceA is the condition that the system does not crash on the first step, conditioning
onA is equivalent to taking a first step without failure and then starting over without
conditioning. Hence,

ExŒC j A� D 1C ExŒC �: (19.7)

Plugging (19.6) and (19.7) into (19.5):

ExŒC � D 1 � p C .1C ExŒC �/q

D p C 1 � p C q ExŒC �

D 1C q ExŒC �:

Then, rearranging terms gives

1 D ExŒC � � q ExŒC � D p ExŒC �;

and thus
ExŒC � D 1=p:

The general principle here is well-worth remembering.

Mean Time to Failure

If a system independently fails at each time step with probability p, then the
expected number of steps up to the first failure is 1=p.

So, for example, if there is a 1% chance that the program crashes at the end of
each hour, then the expected time until the program crashes is 1=0:01 D 100 hours.
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As a further example, suppose a couple insists on having children until they get
a boy, then how many baby girls should they expect before their first boy? Assume
for simplicity that there is a 50% chance that a child will be a boy and that the
genders of siblings are mutually independent.

This is really a variant of the previous problem. The question, “How many hours
until the program crashes?” is mathematically the same as the question, “How
many children must the couple have until they get a boy?” In this case, a crash
corresponds to having a boy, so we should set p D 1=2. By the preceding analysis,
the couple should expect a baby boy after having 1=p D 2 children. Since the last
of these will be a boy, they should expect just one girl. So even in societies where
couples pursue this commitment to boys, the expected population will divide evenly
between boys and girls.

There is a simple intuitive argument that explains the mean time to failure for-
mula (19.8). Suppose the system is restarted after each failure. This makes the
mean time to failure the same as the mean time between successive repeated fail-
ures. Now if the probability of failure at a given step is p, then after n steps we
expect to have pn failures. Now the average number of steps between failures is,
by definition, equal to n=pn D 1=p.

For the record, we’ll state a formal version of this result. A random variable
like C that counts steps to first failure is said to have a geometric distribution with
parameter p.
Definition 19.4.7. A random variable C has a geometric distribution with param-
eter p iff codomain.C / D ZC and

PrŒC D i � D qi�1p:

Lemma 19.4.8. If a random variable C has a geometric distribution with param-
eter p, then

ExŒC � D
1

p
: (19.8)

19.4.7 Expected Returns in Gambling Games

Some of the most interesting examples of expectation can be explained in terms of
gambling games. For straightforward games where you win w dollars with proba-
bility p and you lose x dollars with probability q D 1 � p, it is easy to compute
your expected return or winnings. It is simply

pw � qx dollars:
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For example, if you are flipping a fair coin and you win $1 for heads and you lose $1
for tails, then your expected winnings are

1

2
� 1 �

�
1 �

1

2

�
� 1 D 0:

In such cases, the game is said to be fair since your expected return is zero.

Splitting the Pot

We’ll now look at a different game which is fair—but only on first analysis.
It’s late on a Friday night in your neighborhood hangout when two new biker

dudes, Eric and Nick, stroll over and propose a simple wager. Each player will
put $2 on the bar and secretly write “heads” or “tails” on their napkin. Then you
will flip a fair coin. The $6 on the bar will then be “split”—that is, be divided
equally—among the players who correctly predicted the outcome of the coin toss.
Pot splitting like this is a familiar feature in poker games, betting pools, and lotter-
ies.

This sounds like a fair game, but after your regrettable encounter with strange
dice (Section 17.3), you are definitely skeptical about gambling with bikers. So
before agreeing to play, you go through the four-step method and write out the
tree diagram to compute your expected return. The tree diagram is shown in Fig-
ure 19.6.

The “payoff” values in Figure 19.6 are computed by dividing the $6 pot1 among
those players who guessed correctly and then subtracting the $2 that you put into
the pot at the beginning. For example, if all three players guessed correctly, then
your payoff is $0, since you just get back your $2 wager. If you and Nick guess
correctly and Eric guessed wrong, then your payoff is

6

2
� 2 D 1:

In the case that everyone is wrong, you all agree to split the pot and so, again, your
payoff is zero.

To compute your expected return, you use equation (19.3):

ExŒpayoff� D 0 �
1

8
C 1 �

1

8
C 1 �

1

8
C 4 �

1

8

C .�2/ �
1

8
C .�2/ �

1

8
C .�2/ �

1

8
C 0 �

1

8

D 0:

1The money invested in a wager is commonly referred to as the pot.
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Figure 19.6 The tree diagram for the game where three players each wager $2
and then guess the outcome of a fair coin toss. The winners split the pot.
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This confirms that the game is fair. So, for old time’s sake, you break your solemn
vow to never ever engage in strange gambling games.

The Impact of Collusion

Needless to say, things are not turning out well for you. The more times you play
the game, the more money you seem to be losing. After 1000 wagers, you have
lost over $500. As Nick and Eric are consoling you on your “bad luck,” you do a
back-of-the-envelope calculation and decide that the probability of losing $500 in
1000 fair $2 wagers is very, very small.

Now it is possible of course that you are very, very unlucky. But it is more likely
that something fishy is going on. Somehow the tree diagram in Figure 19.6 is not a
good model of the game.

The “something” that’s fishy is the opportunity that Nick and Eric have to collude
against you. The fact that the coin flip is fair certainly means that each of Nick and
Eric can only guess the outcome of the coin toss with probability 1=2. But when
you look back at the previous 1000 bets, you notice that Eric and Nick never made
the same guess. In other words, Nick always guessed “tails” when Eric guessed
“heads,” and vice-versa. Modelling this fact now results in a slightly different tree
diagram, as shown in Figure 19.7.

The payoffs for each outcome are the same in Figures 19.6 and 19.7, but the
probabilities of the outcomes are different. For example, it is no longer possible
for all three players to guess correctly, since Nick and Eric are always guessing
differently. More importantly, the outcome where your payoff is $4 is also no
longer possible. Since Nick and Eric are always guessing differently, one of them
will always get a share of the pot. As you might imagine, this is not good for you!

When we use equation (19.3) to compute your expected return in the collusion
scenario, we find that

ExŒpayoff� D 0 � 0C 1 �
1

4
C 1 �

1

4
C 4 � 0

C .�2/ � 0C .�2/ �
1

4
C .�2/ �

1

4
C 0 � 0

D �
1

2
:

So watch out for these biker dudes! By colluding, Nick and Eric have made it so
that you expect to lose $.50 every time you play. No wonder you lost $500 over the
course of 1000 wagers.
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Figure 19.7 The revised tree diagram reflecting the scenario where Nick always
guesses the opposite of Eric.
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How to Win the Lottery

Similar opportunities to collude arise in many betting games. For example, consider
the typical weekly football betting pool, where each participant wagers $10 and the
participants that pick the most games correctly split a large pot. The pool seems
fair if you think of it as in Figure 19.6. But, in fact, if two or more players collude
by guessing differently, they can get an “unfair” advantage at your expense!

In some cases, the collusion is inadvertent and you can profit from it. For ex-
ample, many years ago, a former MIT Professor of Mathematics named Herman
Chernoff figured out a way to make money by playing the state lottery. This was
surprising since the state usually takes a large share of the wagers before paying the
winners, and so the expected return from a lottery ticket is typically pretty poor. So
how did Chernoff find a way to make money? It turned out to be easy!

In a typical state lottery,

� all players pay $1 to play and select 4 numbers from 1 to 36,

� the state draws 4 numbers from 1 to 36 uniformly at random,

� the states divides 1/2 of the money collected among the people who guessed
correctly and spends the other half redecorating the governor’s residence.

This is a lot like the game you played with Nick and Eric, except that there are
more players and more choices. Chernoff discovered that a small set of numbers
was selected by a large fraction of the population. Apparently many people think
the same way; they pick the same numbers not on purpose as in the previous game
with Nick and Eric, but based on the Red Sox winning average or today’s date. The
result is as though the players were intentionally colluding to lose. If any one of
them guessed correctly, then they’d have to split the pot with many other players.
By selecting numbers uniformly at random, Chernoff was unlikely to get one of
these favored sequences. So if he won, he’d likely get the whole pot! By analyzing
actual state lottery data, he determined that he could win an average of 7 cents on
the dollar. In other words, his expected return was not �$:50 as you might think,
butC$:07.2 Inadvertent collusion often arises in betting pools and is a phenomenon
that you can take advantage of.

2Most lotteries now offer randomized tickets to help smooth out the distribution of selected se-
quences.
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19.5 Linearity of Expectation

Expected values obey a simple, very helpful rule called Linearity of Expectation.
Its simplest form says that the expected value of a sum of random variables is the
sum of the expected values of the variables.

Theorem 19.5.1. For any random variables R1 and R2,

ExŒR1 CR2� D ExŒR1�C ExŒR2�:

Proof. Let T WWD R1 C R2. The proof follows straightforwardly by rearranging
terms in equation (19.2) in the definition of expectation:

ExŒT � WWD
X
!2S

T .!/ � PrŒ!�

D

X
!2S

.R1.!/CR2.!// � PrŒ!� (def of T )

D

X
!2S

R1.!/PrŒ!�C
X
!2S

R2.!/PrŒ!� (rearranging terms)

D ExŒR1�C ExŒR2�: (by (19.2))

�

A small extension of this proof, which we leave to the reader, implies

Theorem 19.5.2. For random variables R1, R2 and constants a1; a2 2 R,

ExŒa1R1 C a2R2� D a1 ExŒR1�C a2 ExŒR2�:

In other words, expectation is a linear function. A routine induction extends the
result to more than two variables:

Corollary 19.5.3 (Linearity of Expectation). For any random variablesR1; : : : ; Rk
and constants a1; : : : ; ak 2 R,

Ex

24 kX
iD1

aiRi

35 D kX
iD1

ai ExŒRi �:

The great thing about linearity of expectation is that no independence is required.
This is really useful, because dealing with independence is a pain, and we often
need to work with random variables that are not known to be independent.

As an example, let’s compute the expected value of the sum of two fair dice.
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19.5.1 Expected Value of Two Dice

What is the expected value of the sum of two fair dice?
Let the random variable R1 be the number on the first die, and let R2 be the

number on the second die. We observed earlier that the expected value of one die
is 3.5. We can find the expected value of the sum using linearity of expectation:

ExŒR1 CR2� D ExŒR1�C ExŒR2� D 3:5C 3:5 D 7:

Assuming that the dice were independent, we could use a tree diagram to prove
that this expected sum is 7, but this would be a bother since there are 36 cases. And
without assuming independence, it’s not apparent how to apply the tree diagram
approach at all. But notice that we did not have to assume that the two dice were
independent. The expected sum of two dice is 7—even if they are controlled to act
together in some way—as long as each individual controlled die remains fair.

19.5.2 Sums of Indicator Random Variables

Linearity of expectation is especially useful when you have a sum of indicator ran-
dom variables. As an example, suppose there is a dinner party where n men check
their hats. The hats are mixed up during dinner, so that afterward each man receives
a random hat. In particular, each man gets his own hat with probability 1=n. What
is the expected number of men who get their own hat?

Letting G be the number of men that get their own hat, we want to find the
expectation of G. But all we know about G is that the probability that a man gets
his own hat back is 1=n. There are many different probability distributions of hat
permutations with this property, so we don’t know enough about the distribution of
G to calculate its expectation directly using equation (19.2) or (19.3). But linearity
of expectation lets us sidestep this issue.

We’ll use a standard, useful trick to apply linearity, namely, we’ll express G as
a sum of indicator variables. In particular, let Gi be an indicator for the event that
the i th man gets his own hat. That is, Gi D 1 if the i th man gets his own hat, and
Gi D 0 otherwise. The number of men that get their own hat is then the sum of
these indicator random variables:

G D G1 CG2 C � � � CGn: (19.9)

These indicator variables are not mutually independent. For example, if n� 1 men
all get their own hats, then the last man is certain to receive his own hat. But again,
we don’t need to worry about this dependence, since linearity holds regardless.

Since Gi is an indicator random variable, we know from Lemma 19.4.2 that

ExŒGi � D PrŒGi D 1� D 1=n: (19.10)
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By Linearity of Expectation and equation (19.9), this means that

ExŒG� D ExŒG1 CG2 C � � � CGn�

D ExŒG1�C ExŒG2�C � � � C ExŒGn�

D

n‚ …„ ƒ
1

n
C
1

n
C � � � C

1

n

D 1:

So even though we don’t know much about how hats are scrambled, we’ve figured
out that on average, just one man gets his own hat back, regardless of the number
of men with hats!

More generally, Linearity of Expectation provides a very good method for com-
puting the expected number of events that will happen.

Theorem 19.5.4. Given any collection of events A1; A2; : : : ; An, the expected
number of events that will occur is

nX
iD1

PrŒAi �:

For example, Ai could be the event that the i th man gets the right hat back. But
in general, it could be any subset of the sample space, and we are asking for the
expected number of events that will contain a random sample point.

Proof. Define Ri to be the indicator random variable for Ai , where Ri .!/ D 1 if
w 2 Ai and Ri .!/ D 0 if w … Ai . Let R D R1 CR2 C � � � CRn. Then

ExŒR� D
nX
iD1

ExŒRi � (by Linearity of Expectation)

D

nX
iD1

PrŒRi D 1� (by Lemma 19.4.2)

D

nX
iD1

PrŒAi �: (def of indicator variable)

So whenever you are asked for the expected number of events that occur, all you
have to do is sum the probabilities that each event occurs. Independence is not
needed.



“mcs” — 2017/6/5 — 19:42 — page 842 — #850

Chapter 19 Random Variables842

19.5.3 Expectation of a Binomial Distribution

Suppose that we independently flip n biased coins, each with probability p of com-
ing up heads. What is the expected number of heads?

Let J be the random variable denoting the number of heads. Then J has a
binomial distribution with parameters n, p, and

PrŒJ D k� D

 
n

k

!
pkqn�k :

Applying equation (19.3), this means that

ExŒJ � D
nX
kD0

k PrŒJ D k� D
nX
kD0

k

 
n

k

!
pkqn�k : (19.11)

This sum looks a tad nasty, but linearity of expectation leads to an easy derivation
of a simple closed form. We just express J as a sum of indicator random variables,
which is easy. Namely, let Ji be the indicator random variable for the i th coin
coming up heads, that is,

Ji WWD

(
1 if the i th coin is heads
0 if the i th coin is tails:

Then the number of heads is simply

J D J1 C J2 C � � � C Jn:

By Theorem 19.5.4,

ExŒJ � D
nX
iD1

PrŒJi � D pn: (19.12)

That really was easy. If we flip n mutually independent coins, we expect to get
pn heads. Hence the expected value of a binomial distribution with parameters n
and p is simply pn.

But what if the coins are not mutually independent? It doesn’t matter—the an-
swer is still pn because Linearity of Expectation and Theorem 19.5.4 do not as-
sume any independence.

If you are not yet convinced that Linearity of Expectation and Theorem 19.5.4
are powerful tools, consider this: without even trying, we have used them to prove
a complicated looking identity, namely,

nX
kD0

k

 
n

k

!
pkqn�k D pn; (19.13)
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which follows by combining equations (19.11) and (19.12) (see also Exercise 19.28).
The next section has an even more convincing illustration of the power of linear-

ity to solve a challenging problem.

19.5.4 The Coupon Collector Problem

Every time we purchase a kid’s meal at Taco Bell, we are graciously presented with
a miniature “Racin’ Rocket” car together with a launching device which enables us
to project our new vehicle across any tabletop or smooth floor at high velocity.
Truly, our delight knows no bounds.

There are different colored Racin’ Rocket cars. The color of car awarded to
us by the kind server at the Taco Bell register appears to be selected uniformly and
independently at random. What is the expected number of kid’s meals that we must
purchase in order to acquire at least one of each color of Racin’ Rocket car?

The same mathematical question shows up in many guises: for example, what
is the expected number of people you must poll in order to find at least one person
with each possible birthday? The general question is commonly called the coupon
collector problem after yet another interpretation.

A clever application of linearity of expectation leads to a simple solution to the
coupon collector problem. Suppose there are five different colors of Racin’ Rocket
cars, and we receive this sequence:

blue green green red blue orange blue orange gray.

Let’s partition the sequence into 5 segments:

blue„ƒ‚…
X0

green„ƒ‚…
X1

green red„ ƒ‚ …
X2

blue orange„ ƒ‚ …
X3

blue orange gray„ ƒ‚ …
X4

:

The rule is that a segment ends whenever we get a new kind of car. For example, the
middle segment ends when we get a red car for the first time. In this way, we can
break the problem of collecting every type of car into stages. Then we can analyze
each stage individually and assemble the results using linearity of expectation.

In the general case there are n colors of Racin’ Rockets that we’re collecting.
Let Xk be the length of the kth segment. The total number of kid’s meals we must
purchase to get all n Racin’ Rockets is the sum of the lengths of all these segments:

T D X0 CX1 C � � � CXn�1:

Now let’s focus our attention on Xk , the length of the kth segment. At the
beginning of segment k, we have k different types of car, and the segment ends
when we acquire a new type. When we own k types, each kid’s meal contains a
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type that we already have with probability k=n. Therefore, each meal contains a
new type of car with probability 1� k=n D .n� k/=n. Thus, the expected number
of meals until we get a new kind of car is n=.n � k/ by the Mean Time to Failure
rule. This means that

ExŒXk� D
n

n � k
:

Linearity of expectation, together with this observation, solves the coupon col-

lector problem:

ExŒT � D ExŒX0 CX1 C � � � CXn�1�

D ExŒX0�C ExŒX1�C � � � C ExŒXn�1�

D
n

n � 0
C

n

n � 1
C � � � C

n

3
C
n

2
C
n

1

D n

�
1

n
C

1

n � 1
C � � � C

1

3
C
1

2
C
1

1

�
D n

�
1

1
C
1

2
C
1

3
C � � � C

1

n � 1
C
1

n

�
D nHn (19.14)

� n lnn:

Cool! It’s those Harmonic Numbers again.
We can use equation (19.14) to answer some concrete questions. For example,

the expected number of die rolls required to see every number from 1 to 6 is:

6H6 D 14:7 : : : :

And the expected number of people you must poll to find at least one person with
each possible birthday is:

365H365 D 2364:6 : : : :

19.5.5 Infinite Sums

Linearity of expectation also works for an infinite number of random variables
provided that the variables satisfy an absolute convergence criterion.

Theorem 19.5.5 (Linearity of Expectation). Let R0, R1, . . . , be random variables
such that

1X
iD0

ExŒ jRi j �
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converges. Then

Ex

"
1X
iD0

Ri

#
D

1X
iD0

ExŒRi �:

Proof. Let T WWD
P1
iD0Ri .

We leave it to the reader to verify that, under the given convergence hypothesis,
all the sums in the following derivation are absolutely convergent, which justifies
rearranging them as follows:
1X
iD0

ExŒRi � D
1X
iD0

X
s2S

Ri .s/ � PrŒs� (Def. 19.4.1)

D

X
s2S

1X
iD0

Ri .s/ � PrŒs� (exchanging order of summation)

D

X
s2S

"
1X
iD0

Ri .s/

#
� PrŒs� (factoring out PrŒs�)

D

X
s2S

T .s/ � PrŒs� (Def. of T )

D ExŒT � (Def. 19.4.1)

D Ex

"
1X
iD0

Ri

#
: (Def. of T ): �

19.5.6 A Gambling Paradox

One of the simplest casino bets is on “red” or “black” at the roulette table. In each
play at roulette, a small ball is set spinning around a roulette wheel until it lands in
a red, black, or green colored slot. The payoff for a bet on red or black matches the
bet; for example, if you bet $10 on red and the ball lands in a red slot, you get back
your original $10 bet plus another matching $10.

The casino gets its advantage from the green slots, which make the probability
of both red and black each less than 1/2. In the US, a roulette wheel has 2 green
slots among 18 black and 18 red slots, so the probability of red is 18=38 � 0:473.
In Europe, where roulette wheels have only 1 green slot, the odds for red are a little
better—that is, 18=37 � 0:486—but still less than even.

Of course you can’t expect to win playing roulette, even if you had the good
fortune to gamble against a fair roulette wheel. To prove this, note that with a fair
wheel, you are equally likely win or lose each bet, so your expected win on any
spin is zero. Therefore if you keep betting, your expected win is the sum of your
expected wins on each bet: still zero.
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Even so, gamblers regularly try to develop betting strategies to win at roulette
despite the bad odds. A well known strategy of this kind is bet doubling, where
you bet, say, $10 on red and keep doubling the bet until a red comes up. This
means you stop playing if red comes up on the first spin, and you leave the casino
with a $10 profit. If red does not come up, you bet $20 on the second spin. Now if
the second spin comes up red, you get your $20 bet plus $20 back and again walk
away with a net profit of $20 � 10 D $10. If red does not come up on the second
spin, you next bet $40 and walk away with a net win of $40� 20� 10 D $10 if red
comes up on on the third spin, and so on.

Since we’ve reasoned that you can’t even win against a fair wheel, this strat-
egy against an unfair wheel shouldn’t work. But wait a minute! There is a 0.486
probability of red appearing on each spin of the wheel, so the mean time until a red
occurs is less than three. What’s more, red will come up eventually with probability
one, and as soon as it does, you leave the casino $10 ahead. In other words, by bet
doubling you are certain to win $10, and so your expectation is $10, not zero!

Something’s wrong here.

19.5.7 Solution to the Paradox

The argument claiming the expectation is zero against a fair wheel is flawed by an
implicit, invalid use of linearity of expectation for an infinite sum.

To explain this carefully, let Bn be the number of dollars you win on your nth
bet, where Bn is defined to be zero if red comes up before the nth spin of the wheel.
Now the dollar amount you win in any gambling session is

1X
nD1

Bn;

and your expected win is

Ex

"
1X
nD1

Bn

#
: (19.15)

Moreover, since we’re assuming the wheel is fair, it’s true that ExŒBn� D 0, so

1X
nD1

ExŒBn� D
1X
nD1

0 D 0: (19.16)

The flaw in the argument that you can’t win is the implicit appeal to linearity of
expectation to conclude that the expectation (19.15) equals the sum of expectations
in (19.16). This is a case where linearity of expectation fails to hold—even though
the expectation (19.15) is 10 and the sum (19.16) of expectations converges. The
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problem is that the expectation of the sum of the absolute values of the bets di-
verges, so the condition required for infinite linearity fails. In particular, under bet
doubling your nth bet is 10 � 2n�1 dollars while the probability that you will make
an nth bet is 2�n. So

ExŒjBnj� D 10 � 2n�12�n D 5:

Therefore the sum
1X
nD1

ExŒjBnj� D 5C 5C 5C � � �

diverges rapidly.
So the presumption that you can’t beat a fair game, and the argument we offered

to support this presumption, are mistaken: by bet doubling, you can be sure to walk
away a winner. Probability theory has led to an apparently absurd conclusion.

But probability theory shouldn’t be rejected because it leads to this absurd con-
clusion. If you only had a finite amount of money to bet with—say enough money
to make k bets before going bankrupt—then it would be correct to calculate your
expection by summing B1 C B2 C � � � C Bk , and your expectation would be zero
for the fair wheel and negative against an unfair wheel. In other words, in order
to follow the bet doubling strategy, you need to have an infinite bankroll. So it’s
absurd to assume you could actually follow a bet doubling strategy, and we needn’t
be concerned when an absurd assumption leads to an absurd conclusion.

19.5.8 Expectations of Products

While the expectation of a sum is the sum of the expectations, the same is usually
not true for products. For example, suppose that we roll a fair 6-sided die and
denote the outcome with the random variable R. Does ExŒR �R� D ExŒR� �ExŒR�?

We know that ExŒR� D 31
2

and thus .ExŒR�/2 D 121
4

. Let’s compute ExŒR2� to
see if we get the same result.

Ex
�
R2
�
D

X
!2S

R2.!/PrŒw� D
6X
iD1

i2 � PrŒRi D i �

D
12

6
C
22

6
C
32

6
C
42

6
C
52

6
C
62

6
D 15 1=6 ¤ 12 1=4:

That is,
ExŒR �R� ¤ ExŒR� � ExŒR�:

So the expectation of a product is not always equal to the product of the expecta-
tions.
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There is a special case when such a relationship does hold however; namely,
when the random variables in the product are independent.

Theorem 19.5.6. For any two independent random variables R1, R2,

ExŒR1 �R2� D ExŒR1� � ExŒR2�:

The proof follows by rearrangement of terms in the sum that defines ExŒR1 �R2�.
Details appear in Problem 19.26.

Theorem 19.5.6 extends routinely to a collection of mutually independent vari-
ables.

Corollary 19.5.7. [Expectation of Independent Product]
If random variables R1; R2; : : : ; Rk are mutually independent, then

Ex

24 kY
iD1

Ri

35 D kY
iD1

ExŒRi �:

Problems for Section 19.2

Practice Problems

Problem 19.1.
Let IA and IB be the indicator variables for events A and B . Prove that IA and IB
are independent iff A and B are independent.

Hint: Let A1 WWD A and A0 WWD A, so the event ŒIA D c� is the same as Ac for
c 2 f0; 1g; likewise for B1; B0.

Homework Problems

Problem 19.2.
Let R, S and T be random variables with the same codomain V .

(a) Suppose R is uniform—that is,

PrŒR D b� D
1

jV j
;

for all b 2 V—and R is independent of S . Originally this text had the following
argument:
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The probability that R D S is the same as the probability that R takes
whatever value S happens to have, therefore

PrŒR D S� D
1

jV j
: (19.17)

Are you convinced by this argument? Write out a careful proof of (19.17).

Hint: The event ŒR D S� is a disjoint union of events

ŒR D S� D
[
b2V

ŒR D b AND S D b�:

(b) Let S�T be the random variable giving the values of S and T .3 Now suppose
R has a uniform distribution, and R is independent of S � T . How about this
argument?

The probability that R D S is the same as the probability that R equals
the first coordinate of whatever value S � T happens to have, and this
probability remains equal to 1=jV j by independence. Therefore the
event ŒR D S� is independent of ŒS D T �.

Write out a careful proof that ŒR D S� is independent of ŒS D T �.

(c) Let V D f1; 2; 3g and .R; S; T / take the following triples of values with equal
probability,

.1; 1; 1/; .2; 1; 1/; .1; 2; 3/; .2; 2; 3/; .1; 3; 2/; .2; 3; 2/:

Verify that

1. R is independent of S � T ,

2. The event ŒR D S� is not independent of ŒS D T �.

3. S and T have a uniform distribution.

3That is, S � T W S ! V � V where

.S � T /.!/ WWD .S.!/; T .!//

for every outcome ! 2 S.
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Problem 19.3.
Let R, S and T be mutually independent indicator variables.

In general, the event that S D T is not independent of R D S . We can explain
this intuitively as follows: suppose for simplicity that S is uniform, that is, equally
likely to be 0 or 1. This implies that S is equally likely as not to equal R, that is
PrŒR D S� D 1=2; likewise, PrŒS D T � D 1=2.

Now suppose further that both R and T are more likely to equal 1 than to equal
0. This implies that R D S makes it more likely than not that S D 1, and knowing
that S D 1, makes it more likely than not that S D T . So knowing that R D S

makes it more likely than not that S D T , that is, Pr
�
S D T j R D S

�
> 1=2.

Now prove rigorously (without any appeal to intuition) that the events ŒR D S�

and ŒS D T � are independent iff either R is uniform4, or T is uniform, or S is
constant5.

Problems for Section 19.3

Practice Problems

Problem 19.4.
Suppose R, S and T be mutually independent random variables on the same prob-
ability space with uniform distribution on the range f1; 2; 3g.

Let M D maxfR; S; T g. Compute the values of the probability density function
PDFM of M .

4That is, PrŒR D 1� D 1=2.
5That is, PrŒS D 1� is one or zero.
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Class Problems

Guess the Bigger Number Game

Team 1:

� Write two different integers between 0 and 7 on separate pieces of paper.

� Put the papers face down on a table.

Team 2:

� Turn over one paper and look at the number on it.

� Either stick with this number or switch to the other (unseen) number.

Team 2 wins if it chooses the larger number; else, Team 1 wins.

Problem 19.5.
The analysis in Section 19.3.3 implies that Team 2 has a strategy that wins 4/7 of
the time no matter how Team 1 plays. Can Team 2 do better? The answer is “no,”
because Team 1 has a strategy that guarantees that it wins at least 3/7 of the time,
no matter how Team 2 plays. Describe such a strategy for Team 1 and explain why
it works.

Problem 19.6.
Suppose you have a biased coin that has probability p of flipping heads. Let J be
the number of heads in n independent coin flips. So J has the general binomial
distribution:

PDFJ .k/ D

 
n

k

!
pkqn�k

where q WWD 1 � p.

(a) Show that

PDFJ .k � 1/ < PDFJ .k/ for k < np C p;

PDFJ .k � 1/ > PDFJ .k/ for k > np C p:
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(b) Conclude that the maximum value of PDFJ is asymptotically equal to

1
p
2�npq

:

Hint: For the asymptotic estimate, it’s ok to assume that np is an integer, so by
part (a), the maximum value is PDFJ .np/. Use Stirling’s Formula.

Problem 19.7.
Let R1; R2; : : : ; Rm, be mutually independent random variables with uniform dis-
tribution on Œ1::n�. Let M WWDmaxfRi j i 2 Œ1::m� g.

(a) Write a formula for PDFM .1/.

(b) More generally, write a formula for PrŒM � k�.

(c) For k 2 Œ1::n�, write a formula for PDFM .k/ in terms of expressions of the
form “PrŒM � j �” for j 2 Œ1::n�.

Homework Problems

Problem 19.8.
An over-caffeinated sailor of Tech Dinghy wanders along Seaside Boulevard. In
each step, the sailor randomly moves one unit left or right with equal probability.

We let the sailor’s initial position be designated location zero, with successive
positions to the right labelled 1,2,. . . , and positions to the left labelled -1,-2,. . . .
Let Lt be the random variable giving the sailor’s location after t steps. Before he
starts, the sailor is known to be at location zero, so

PDFL0
.n/ D

(
1 if n D 0;
0 otherwise:

After one step, the sailor is equally likely to be at location 1 or �1, so

PDFL1
.n/ D

(
1=2 if n D ˙1;
0 otherwise:

(a) Give the distributions PDFLt
for t D 2; 3; 4 by filling in the table of probabil-

ities below, where omitted entries are 0. For each row, write all the nonzero entries
so they have the same denominator.
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location
-4 -3 -2 -1 0 1 2 3 4

initially 1

after 1 step 1=2 0 1=2

after 2 steps ? ? ? ? ?
after 3 steps ? ? ? ? ? ? ?
after 4 steps ? ? ? ? ? ? ? ? ?

(b) Help the staff of the Sailing Pavilion locate the sailor by answering the follow-
ing questions. Provide your derivations and reasoning.

(i) What is the final location of a t -step walk that moves right exactly i times?

(ii) How many different length-t walks are there that end at that location?

(iii) What is the probability that the sailor ends at this location?

(iv) Let Bt WWD .Lt C t /=2. Conclude that Bt has an unbiased binomial distribu-
tion.

Problems for Section 19.4

Practice Problems

Problem 19.9.
Bruce Lee, on a movie that didn’t go public, is practicing by breaking 5 boards with
his fists. He is able to break a board with probability 0.8—he is practicing with his
left fist, that’s why it’s not 1—and he breaks each board independently.

(a) What is the probability that Bruce breaks exactly 2 out of the 5 boards that are
placed before him?

(b) What is the probability that Bruce breaks at most 3 out of the 5 boards that are
placed before him?

(c) What is the expected number of boards Bruce will break?

Problem 19.10.
A news article reporting on the departure of a school official from California to
Alabama dryly commented that this move would raise the average IQ in both states.
Explain.
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Figure 19.8 Sample space tree for coin toss until two consecutive tails.

Class Problems

Problem 19.11.
Here’s a dice game with maximum payoff k: make three independent rolls of a fair
die, and if you roll a six

� no times, then you lose 1 dollar;

� exactly once, then you win 1 dollar;

� exactly twice, then you win 2 dollars;

� all three times, then you win k dollars.

For what value of k is this game fair?6

Problem 19.12. (a) Suppose we flip a fair coin and let NTT be the number of flips
until the first time two consecutive Tails appear. What is ExŒNTT�?

Hint: Let D be the tree diagram for this process. Explain why D can be described
by the tree in Figure 19.8. Use the Law of Total Expectation 19.4.6.

(b) Let NTH be the number of flips until a Tail immediately followed by a Head
comes up. What is ExŒNTH�?

(c) Suppose we now play a game: flip a fair coin until either TT or TH occurs.
You win if TT comes up first, and lose if TH comes up first. Since TT takes 50%

6This game is actually offered in casinos with k D 3, where it is called Carnival Dice.
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longer on average to turn up, your opponent agrees that he has the advantage. So
you tell him you’re willing to play if you pay him $5 when he wins, and he pays
you with a mere 20% premium—that is $6—when you win.

If you do this, you’re sneakily taking advantage of your opponent’s untrained intu-
ition, since you’ve gotten him to agree to unfair odds. What is your expected profit
per game?

Problem 19.13.
Ben Bitdiddle is asked to analyze a game in which a fair coin is tossed until the first
time a head turns up. If this head occurs on the nth toss, and n is odd, then he wins
$2n=n, but if n is even, he loses $2n=n. Ben observes that the expected dollar win
from this game is

.1=2/�2�.1=4/�2C.1=8/�8=3C� � �˙.1=2n/�2n=n D 1�1=2C1=3�1=4C� � �˙1=n:

which is the alternating harmonic series—a series that converges to a definite real
number r > 0. Since r > 0, Ben concludes that it’s to his advantage to play this
game, but as usual, his shoot-from-the-hip analysis is off the mark. Explain.

Problem 19.14.
Let T be a positive integer valued random variable such that

PDFT .n/ D
1

an2
;

where
a WWD

X
n2ZC

1

n2
:

(a) Prove that ExŒT � is infinite.

(b) Prove that ExŒ
p
T � is finite.

Exam Problems

Problem 19.15.
A record of who beat whom in a round-robin tournament can be described with a
tournament digraph, where the vertices correspond to players and there is an edge
hx!yi iff x beat y in their game. A ranking of the players is a path that includes
all the players. A tournament digraph may in general have one or more rankings.7

7It has a unique ranking iff it is a DAG, see Problem 10.10.
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Figure 19.9 Outcome Tree for Flipping Until HHH

Suppose we construct a random tournament digraph by letting each of the players
in a match be equally likely to win and having results of all the matches be mutually
independent. Find a formula for the expected number of rankings in a random 10-
player tournament. Conclude that there is a 10-vertex tournament digraph with
more than 7000 rankings.

This problem is an instance of the probabilistic method. It uses probability to
prove the existence of an object without constructing it.

Problem 19.16.
A coin with probability p of flipping Heads and probability q WWD 1� p of flipping
tails is repeatedly flipped until three consecutive Heads occur. The outcome treeD
for this setup is illustrated in Figure 19.9.

Let e.S/ be the expected number of flips starting at the root of subtree S of D.
So we’re interested in finding e.D/.

Write a small system of equations involving e.D/; e.B/, and e.C / that could be
solved to find e.D/. You do not need to solve the equations.

Problem 19.17.
A coin with probability p of flipping Heads and probability q WWD 1� p of flipping
tails is repeatedly flipped until two consecutive flips match—that is, until HH or
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Figure 19.10 Outcome Tree for Flipping Until HH or TT

TT occurs. The outcome tree A for this setup is illustrated in Figure 19.10.
Let e.T / be the expected number of flips starting at the root of subtree T of A.

So we’re interested in finding e.A/.
Write a small system of equations involving e.A/; e.B/, and e.C / that could be

solved to find e.A/. You do not need to solve the equations.

Homework Problems

Problem 19.18.
We are given a random vector of n distinct numbers. We then determine the maxi-
mum of these numbers using the following procedure:

Pick the first number. Call it the current maximum. Go through the rest of the
vector (in order) and each time we come across a number (call it x) that exceeds
our current maximum, we update the current maximum with x.

What is the expected number of times we update the current maximum?
Hint: Let Xi be the indicator variable for the event that the i th element in the

vector is larger than all the previous elements.
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Problems for Section 19.5

Practice Problems

Problem 19.19.
MIT students sometimes delay doing laundry until they finish their problem sets.
Assume all random values described below are mutually independent.

(a) A busy student must complete 3 problem sets before doing laundry. Each
problem set requires 1 day with probability 2=3 and 2 days with probability 1=3.
Let B be the number of days a busy student delays laundry. What is ExŒB�?

Example: If the first problem set requires 1 day and the second and third problem
sets each require 2 days, then the student delays for B D 5 days.

(b) A relaxed student rolls a fair, 6-sided die in the morning. If he rolls a 1, then he
does his laundry immediately (with zero days of delay). Otherwise, he delays for
one day and repeats the experiment the following morning. Let R be the number
of days a relaxed student delays laundry. What is ExŒR�?

Example: If the student rolls a 2 the first morning, a 5 the second morning, and a 1
the third morning, then he delays for R D 2 days.

(c) Before doing laundry, an unlucky student must recover from illness for a num-
ber of days equal to the product of the numbers rolled on two fair, 6-sided dice.
Let U be the expected number of days an unlucky student delays laundry. What is
ExŒU �?

Example: If the rolls are 5 and 3, then the student delays for U D 15 days.

(d) A student is busy with probability 1=2, relaxed with probability 1=3, and un-
lucky with probability 1=6. LetD be the number of days the student delays laundry.
What is ExŒD�?

Problem 19.20.
Each Math for Computer Science final exam will be graded according to a rigorous
procedure:

� With probability 4=7 the exam is graded by a TA,with probability 2=7 it is
graded by a lecturer, and with probability 1=7, it is accidentally dropped
behind the radiator and arbitrarily given a score of 84.
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� TAs score an exam by scoring each problem individually and then taking the
sum.

– There are ten true/false questions worth 2 points each. For each, full
credit is given with probability 3=4, and no credit is given with proba-
bility 1=4.

– There are four questions worth 15 points each. For each, the score is
determined by rolling two fair dice, summing the results, and adding 3.

– The single 20 point question is awarded either 12 or 18 points with
equal probability.

� Lecturers score an exam by rolling a fair die twice, multiplying the results,
and then adding a “general impression”score.

– With probability 4=10, the general impression score is 40.
– With probability 3=10, the general impression score is 50.
– With probability 3=10, the general impression score is 60.

Assume all random choices during the grading process are independent.
(a) What is the expected score on an exam graded by a TA?

(b) What is the expected score on an exam graded by a lecturer?

(c) What is the expected score on a Math for Computer Science final exam?

Class Problems

Problem 19.21.
A classroom has sixteen desks in a 4 � 4 arrangement as shown below.



“mcs” — 2017/6/5 — 19:42 — page 860 — #868

Chapter 19 Random Variables860

If there is a girl in front, behind, to the left, or to the right of a boy, then the two
flirt. One student may be in multiple flirting couples; for example, a student in a
corner of the classroom can flirt with up to two others, while a student in the center
can flirt with as many as four others. Suppose that desks are occupied mutually in-
dependently by boys and girls with equal probability. What is the expected number
of flirting couples? Hint: Linearity.

Problem 19.22.
A literal is a propositional variable P or its negation P , where as usual “P ” abbre-
viates “NOT.P /.” A 3-clause is an OR of three literals from three different variables.
For example,

P1 OR P2 OR P3

is a 3-clause, but P1 OR P1 OR P2 is not because P1 appears twice. A 3-CNF is a
formula that is an AND of 3-clauses. For example,

.P1 OR P2 OR P3/ AND .P1 OR P3 OR P4/ AND .P2 OR P3 OR P4/

is a 3-CNF.
Suppose that G is a 3-CNF with seven 3-clauses. Assign true/false values to the

variables in G independently and with equal probability.

(a) What is the probability that the nth clause is true?

(b) What is the expected number of true 3-clauses in G?

(c) Use the fact that the answer to part (b) is greater than six to conclude G must
be satisfiable.

Problem 19.23.
A literal is a propositional variable or its negation. A k-clause is an OR of k literals,
with no variable occurring more than once in the clause. For example,

P OR Q OR R OR V;

is a 4-clause, but
V OR Q OR X OR V;

is not, since V appears twice.
Let S be a set of n distinct k-clauses involving v variables. The variables in

different k-clauses may overlap or be completely different, so k � v � nk.
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A random assignment of true/false values will be made independently to each of
the v variables, with true and false assignments equally likely. Write formulas in n,
k and v in answer to the first two parts below.

(a) What is the probability that any particular k-clause in S is true under the ran-
dom assignment?

(b) What is the expected number of true k-clauses in S?

(c) A set of propositions is satisfiable iff there is an assignment to the variables
that makes all of the propositions true. Use your answer to part (b) to prove that if
n < 2k , then S is satisfiable.

Problem 19.24.
There are n students who are both taking Math for Computer Science (MCS) and
Introduction to Signal Processing (SP) this term. To make it easier on themselves,
the Professors in charge of these classes have decided to randomly permute their
class lists and then assign students grades based on their rank in the permutation
(just as many students have suspected). Assume the permutations are equally likely
and independent of each other. What is the expected number of students that have
in rank in SP that is higher by k than their rank in MCS?

Hint: Let Xr be the indicator variable for the r th ranked student in CS having a
rank in SP of at least r C k.

Problem 19.25.
A man has a set of n keys, one of which fits the door to his apartment. He tries the
keys randomly until he finds the key that fits. Let T be the number of times he tries
keys until he finds the right key.

(a) Suppose each time he tries a key that does not fit the door, he simply puts it
back. This means he might try the same ill-fitting key several times before he finds
the right key. What is ExŒT �?

Hint: Mean time to failure.

Now suppose he throws away each ill-fitting key that he tries. That is, he chooses
keys randomly from among those he has not yet tried. This way he is sure to find
the right key within n tries.

(b) If he hasn’t found the right key yet and there are m keys left, what is the
probability that he will find the right key on the next try?
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(c) Given that he did not find the right key on his first k � 1 tries, verify that the
probability that he does not find it on the kth trial is given by

Pr
�
T > k j T > k � 1

�
D

n � k

n � .k � 1/
:

(d) Prove that

PrŒT > k� D
n � k

n
: (19.18)

Hint: This can be argued directly, but if you don’t see how, induction using part (c)
will work.

(e) Conclude that in this case

ExŒT � D
nC 1

2
:

Problem 19.26.
Justify each line of the following proof that if R1 and R2 are independent, then

ExŒR1 �R2� D ExŒR1� � ExŒR2�:
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Proof.

ExŒR1 �R2�

D

X
r2range.R1�R2/

r � PrŒR1 �R2 D r�

D

X
ri2range.Ri /

r1r2 � PrŒR1 D r1 and R2 D r2�

D

X
r12range.R1/

X
r22range.R2/

r1r2 � PrŒR1 D r1 and R2 D r2�

D

X
r12range.R1/

X
r22range.R2/

r1r2 � PrŒR1 D r1� � PrŒR2 D r2�

D

X
r12range.R1/

0@r1 PrŒR1 D r1� �
X

r22range.R2/

r2 PrŒR2 D r2�

1A
D

X
r12range.R1/

r1 PrŒR1 D r1� � ExŒR2�

D ExŒR2� �
X

r12range.R1/

r1 PrŒR1 D r1�

D ExŒR2� � ExŒR1�:

�

Problem 19.27.
A gambler bets on the toss of a fair coin: if the toss is Heads, the gambler gets back
the amount he bet along with an additional the amount equal to his bet. Otherwise
he loses the amount bet. For example, the gambler bets $10 and wins, he gets back
$20 for a net profit of $10. If he loses, he gets back nothing for a net profit of
�$10—that is, a net loss of $10.

Gamblers often try to develop betting strategies to beat the odds is such a game.
A well known strategy of this kind is bet doubling, namely, bet $10 on red, and
keep doubling the bet until a red comes up. So if the gambler wins his first $10
bet, he stops playing and leaves with his $10 profit. If he loses the first bet, he bets
$20 on the second toss. Now if the second toss is Heads, he gets his $20 bet plus
$20 back and again walks away with a net profit of 20 � 10 D $10. If he loses the
second toss, he bets $40 on the third toss, and so on.

You would think that any such strategy will be doomed: in a fair game your
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expected win by definition is zero, so no strategy should have nonzero expectation.
We can make this reasoning more precise as follows:

Let Wn be a random variable equal to the amount won in the nth
coin toss. So with the bet doubling strategy starting with a $10 bet,
W1 D ˙10 with equal probability. If the betting ends before the nth
bet, define Wn D 0. So W2 is zero with probability 1/2, is 10 with
probability 1/4, and is �10 with probability 1/4. Now lettingW be the
amount won when the gambler stops betting, we have

W D W1 CW2 C � � � CWn C � � � :

Furthermore, since each toss is fair,

ExŒWn� D 0

for all n > 0. Now by linearity of expectation, we have

ExŒW � D ExŒW1�CExŒW2�C� � �CExŒWn�C� � � D 0C0C� � �C0C� � � D 0;
(19.19)

confirming that with fair tosses, the expected win is zero.

But wait a minute!
(a) Explain why the gambler is certain to win eventually if he keeps betting.

(b) Prove that when the gambler finally wins a bet, his net profit is $10.

(c) Since the gambler’s profit is always $10 when he wins, and he is certain to
win, his expected profit is also $10. That is

ExŒW � D 10;

contradicting (19.19). So what’s wrong with the reasoning that led to the false
conclusion (19.19)?

Homework Problems

Problem 19.28.
Applying linearity of expectation to the binomial distribution fn;p immediately
yielded the identity 19.13:

ExŒfn;p� WWD
nX
kD0

k

 
n

k

!
pk.1 � p/n�k D pn: (*)
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Though it might seem daunting to prove this equation without appeal to linearity, it
is, after all, pretty similar to the binomial identity, and this connection leads to an
immediate alternative algebraic derivation.
(a) Starting with the binomial identity for .x C y/n, prove that

xn.x C y/n�1 D

nX
kD0

k

 
n

k

!
xkyn�k : (**)

(b) Now conclude equation (*).

Problem 19.29.
Short-term Capital Management (STCM) wants you to invest in a fund with the
following rules: you invest one million dollars in their Forward Looking Internet
Package (FLIP). Each year, the money in your FLIP account will double or halve
with equal probability, and each year STCM will pay you a dividend equal to 10%
of the money in your account.
(a) What is the expected number of dollars in your account at the end of k years?

Write a simple formula in terms of k.

Hint: $1,000,000 is in the account the end of year zero. Let Xi be 2 or 1=2 de-
pending on what happens to your money at the end of the i th year. So the amount
of money in the account at the end of year one is X1 � $1; 000; 000 and the dividend
paid is .1=10/X1 � $1; 000; 000.

(b) Give a closed form numerical expression for the expected total number of
dollars in dividend payments you will receive by the end of the 10th year. You do
not need to evaluate your expression.

(c) Adam Smith does his own analysis of your account. He lets Yi D 1 if the
money doubles at the end of year i and Yi D �1 otherwise. Then the money in
your account after year k is

1062Y12Y2 � � � 2Yk D 1062Y1CY2C���CYk :

But ExŒYi � D 0, so

2ExŒY1CY2C���CYk� D 2ExŒY1�CExŒY2�C���CExŒYk� D 2k�0 D 20 D 1:

In other words, the expected amount of money in your account forever remains the
same as your original investment.

What is wrong with Adam Smith’s analysis?
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Problem 19.30.
A coin will be flipped repeatedly until the sequence TTH (tail/tail/head) comes
up. Successive flips are independent, and the coin has probability p of coming up
heads. Let NTTH be the number of coin flips until TTH first appears. What value of
p minimizes ExŒNTTH�?

Problem 19.31.
(A true story from World War Two.)

The army needs to test n soldiers for a disease. There is a blood test that accu-
rately determines when a blood sample contains blood from a diseased soldier. The
army presumes, based on experience, that the fraction of soldiers with the disease
is approximately equal to some small number p.

Approach (1) is to test blood from each soldier individually; this requires n tests.
Approach (2) is to randomly group the soldiers into g groups of k soldiers, where
n D gk. For each group, blend the k blood samples of the people in the group,
and test the blended sample. If the group-blend is free of the disease, we are done
with that group after one test. If the group-blend tests positive for the disease, then
someone in the group has the disease, and we to test all the people in the group for
a total of k C 1 tests on that group.

Since the groups are chosen randomly, each soldier in the group has the disease
with probability p, and it is safe to assume that whether one soldier has the disease
is independent of whether the others do.

(a) What is the expected number of tests in Approach (2) as a function of the
number of soldiers n, the disease fraction p, and the group size k?

(b) Show how to choose k so that the expected number of tests using Approach (2)
is approximately n

p
p. Hint: Since p is small, you may assume that .1�p/k � 1

and ln.1 � p/ � �p.

(c) What fraction of the work does Approach (2) expect to save over Approach
(1) in a million-strong army of whom approximately 1% are diseased?

(d) Can you come up with a better scheme by using multiple levels of grouping,
that is, groups of groups?

Problem 19.32.
A wheel-of-fortune has the numbers from 1 to 2n arranged in a circle. The wheel
has a spinner, and a spin randomly determines the two numbers at the opposite ends
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of the spinner. How would you arrange the numbers on the wheel to maximize the
expected value of:

(a) the sum of the numbers chosen? What is this maximum?

(b) the product of the numbers chosen? What is this maximum?

Hint: For part (b), verify that the sum of the products of numbers oppposite each
other is maximized when successive integers are on the opposite ends of the spin-
ner, that is, 1 is opposite 2, 3 is opposite 4, 5 is opposite 6, . . . .

Problem 19.33.
Let R and S be independent random variables, and f and g be any functions such
that domain.f / D codomain.R/ and domain.g/ D codomain.S/. Prove that f .R/
and g.S/ are also independent random variables.

Hint: The event Œf .R/ D a� is the disjoint union of all the events ŒR D r� for r
such that f .r/ D a.

Problem 19.34.
Peeta bakes between 1 and 2n loaves of bread to sell every day. Each day he rolls
a fair, n-sided die to get a number from 1 to n, then flips a fair coin. If the coin is
heads, he bakes m loaves of bread , where m is the number on the die that day, and
if the coin is tails, he bakes 2m loaves.

(a) For any positive integer k � 2n, what is the probability that Peeta will make
k loaves of bread on any given day?

Hint: Express your solution by cases.

(b) What is the expected number of loaves that Peeta would bake on any given
day?

(c) Continuing this process, Peeta bakes bread every day for 30 days. What is the
expected total number of loaves that Peeta would bake?

Exam Problems

Problem 19.35.
A box initially contains n balls, all colored black. A ball is drawn from the box at
random.

� If the drawn ball is black, then a biased coin with probability, p > 0, of
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coming up heads is flipped. If the coin comes up heads, a white ball is put
into the box; otherwise the black ball is returned to the box.

� If the drawn ball is white, then it is returned to the box.

This process is repeated until the box contains n white balls.
Let D be the number of balls drawn until the process ends with the box full of

white balls. Prove that ExŒD� D nHn=p, where Hn is the nth Harmonic number.
Hint: LetDi be the number of draws after the i th white ball until the draw when

the .i C 1/st white ball is put into the box.

Problem 19.36.
A gambler bets $10 on “red” at a roulette table (the odds of red are 18/38, slightly
less than even) to win $10. If he wins, he gets back twice the amount of his bet,
and he quits. Otherwise, he doubles his previous bet and continues.

For example, if he loses his first two bets but wins his third bet, the total spent
on his three bets is 10 C 20 C 40 dollars, but he gets back 2 � 40 dollars after his
win on the third bet, for a net profit of $10.

(a) What is the expected number of bets the gambler makes before he wins?

(b) What is his probability of winning?

(c) What is his expected final profit (amount won minus amount lost)?

(d) You can beat a biased game by bet doubling, but bet doubling is not feasible
because it requires an infinite bankroll. Verify this by proving that the expected size
of the gambler’s last bet is infinite.

Problem 19.37.
Six pairs of cards with ranks 1–6 are shuffled and laid out in a row, for example,

1 2 3 3 4 6 1 4 5 5 2 6

In this case, there are two adjacent pairs with the same value, the two 3’s and the
two 5’s. What is the expected number of adjacent pairs with the same value?
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Problem 19.38.
There are six kinds of cards, three of each kind, for a total of eighteen cards. The
cards are randonly shuffled and laid out in a row, for example,

1 2 5 5 5 1 4 6 2 6 6 2 1 4 3 3 3 4

In this case, there are two adjacent triples of the same kind, the three 3’s and the
three 5’s.

(a) Derive a formula for the probability that the 4th, 5th, and 6th consecutive cards
will be the same kind—that is, all 1’s or all 2’s or. . . all 6’s?

(b) Let p WWD PrŒ4th, 5th and 6th cards match�—that is, p is the correct answer to
part (a). Write a simple formula for the expected number of matching triples in
terms of p.
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20 Deviation from the Mean
In the previous chapter, we took it for granted that expectation is useful and de-
veloped a bunch of techniques for calculating expected values. But why should we
care about this value? After all, a random variable may never take a value anywhere
near its expectation.

The most important reason to care about the mean value comes from its con-
nection to estimation by sampling. For example, suppose we want to estimate the
average age, income, family size, or other measure of a population. To do this,
we determine a random process for selecting people—say, throwing darts at cen-
sus lists. This process makes the selected person’s age, income, and so on into a
random variable whose mean equals the actual average age or income of the pop-
ulation. So, we can select a random sample of people and calculate the average
of people in the sample to estimate the true average in the whole population. But
when we make an estimate by repeated sampling, we need to know how much con-
fidence we should have that our estimate is OK, and how large a sample is needed
to reach a given confidence level. The issue is fundamental to all experimental
science. Because of random errors—noise—repeated measurements of the same
quantity rarely come out exactly the same. Determining how much confidence
to put in experimental measurements is a fundamental and universal scientific is-
sue. Technically, judging sampling or measurement accuracy reduces to finding the
probability that an estimate deviates by a given amount from its expected value.

Another aspect of this issue comes up in engineering. When designing a sea wall,
you need to know how strong to make it to withstand tsunamis for, say, at least a
century. If you’re assembling a computer network, you might need to know how
many component failures it should tolerate to likely operate without maintenance
for at least a month. If your business is insurance, you need to know how large a
financial reserve to maintain to be nearly certain of paying benefits for, say, the next
three decades. Technically, such questions come down to finding the probability of
extreme deviations from the mean.

This issue of deviation from the mean is the focus of this chapter.

20.1 Markov’s Theorem

Markov’s theorem gives a generally coarse estimate of the probability that a random
variable takes a value much larger than its mean. It is an almost trivial result by
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itself, but it actually leads fairly directly to much stronger results.
The idea behind Markov’s Theorem can be explained by considering the quantity

known as intelligence quotient, IQ, which remains in wide use despite doubts about
its legitimacy. IQ was devised so that its average measurement would be 100. This
immediately implies that at most 1/3 of the population can have an IQ of 300 or
more, because if more than a third had an IQ of 300, then the average would have to
be more than .1=3/ � 300 D 100. So, the probability that a randomly chosen person
has an IQ of 300 or more is at most 1/3. By the same logic, we can also conclude
that at most 2/3 of the population can have an IQ of 150 or more.

Of course, these are not very strong conclusions. No IQ of over 300 has ever
been recorded; and while many IQ’s of over 150 have been recorded, the fraction
of the population that actually has an IQ that high is very much smaller than 2/3.
But though these conclusions are weak, we reached them using just the fact that the
average IQ is 100—along with another fact we took for granted, that IQ is never
negative. Using only these facts, we can’t derive smaller fractions, because there
are nonnegative random variables with mean 100 that achieve these fractions. For
example, if we choose a random variable equal to 300 with probability 1/3 and 0
with probability 2/3, then its mean is 100, and the probability of a value of 300 or
more really is 1/3.

Theorem 20.1.1 (Markov’s Theorem). If R is a nonnegative random variable, then
for all x > 0

PrŒR � x� �
ExŒR�
x

: (20.1)

Proof. Let y vary over the range of R. Then for any x > 0

ExŒR� WWD
X
y

y PrŒR D y�

�

X
y�x

y PrŒR D y� �
X
y�x

x PrŒR D y� D x
X
y�x

PrŒR D y�

D x PrŒR � x�; (20.2)

where the first inequality follows from the fact that R � 0.
Dividing the first and last expressions in (20.2) by x gives the desired result. �

Our focus is deviation from the mean, so it’s useful to rephrase Markov’s Theo-
rem this way:

Corollary 20.1.2. If R is a nonnegative random variable, then for all c � 1

PrŒR � c � ExŒR� � �
1

c
: (20.3)
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This Corollary follows immediately from Markov’s Theorem(20.1.1) by letting
x be c � ExŒR�.

20.1.1 Applying Markov’s Theorem

Let’s go back to the Hat-Check problem of Section 19.5.2. Now we ask what
the probability is that x or more men get the right hat, this is, what the value of
PrŒG � x� is.

We can compute an upper bound with Markov’s Theorem. Since we know
ExŒG� D 1, Markov’s Theorem implies

PrŒG � x� �
ExŒG�
x
D
1

x
:

For example, there is no better than a 20% chance that 5 men get the right hat,
regardless of the number of people at the dinner party.

The Chinese Appetizer problem is similar to the Hat-Check problem. In this
case, n people are eating different appetizers arranged on a circular, rotating Chi-
nese banquet tray. Someone then spins the tray so that each person receives a
random appetizer. What is the probability that everyone gets the same appetizer as
before?

There are n equally likely orientations for the tray after it stops spinning. Ev-
eryone gets the right appetizer in just one of these n orientations. Therefore, the
correct answer is 1=n.

But what probability do we get from Markov’s Theorem? Let the random vari-
ableR be the number of people that get the right appetizer. Then of course ExŒR� D
1, so applying Markov’s Theorem, we find:

PrŒR � n� �
ExŒR�
n
D
1

n
:

So for the Chinese appetizer problem, Markov’s Theorem is precisely right!
Unfortunately, Markov’s Theorem is not always so accurate. For example, it

gives the same 1=n upper limit for the probability that everyone gets their own hat
back in the Hat-Check problem, where the probability is actually 1=.nŠ/. So for
Hat-Check, Markov’s Theorem gives a probability bound that is way too large.

20.1.2 Markov’s Theorem for Bounded Variables

Suppose we learn that the average IQ among MIT students is 150 (which is not
true, by the way). What can we say about the probability that an MIT student has
an IQ of more than 200? Markov’s theorem immediately tells us that no more than
150=200 or 3=4 of the students can have such a high IQ. Here, we simply applied
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Markov’s Theorem to the random variable R equal to the IQ of a random MIT
student to conclude:

PrŒR > 200� �
ExŒR�
200

D
150

200
D
3

4
:

But let’s observe an additional fact (which may be true): no MIT student has an
IQ less than 100. This means that if we let T WWD R � 100, then T is nonnegative
and ExŒT � D 50, so we can apply Markov’s Theorem to T and conclude:

PrŒR > 200� D PrŒT > 100� �
ExŒT �
100

D
50

100
D
1

2
:

So only half, not 3/4, of the students can be as amazing as they think they are. A
bit of a relief!

In fact, we can get better bounds applying Markov’s Theorem toR�b instead of
R for any lower bound b on R (see Problem 20.3). Similarly, if we have any upper
bound u on a random variable S , then u�S will be a nonnegative random variable,
and applying Markov’s Theorem to u � S will allow us to bound the probability
that S is much less than its expectation.

20.2 Chebyshev’s Theorem

We’ve seen that Markov’s Theorem can give a better bound when applied to R � b
rather than R. More generally, a good trick for getting stronger bounds on a ran-
dom variable R out of Markov’s Theorem is to apply the theorem to some cleverly
chosen function of R. Choosing functions that are powers of the absolute value of
R turns out to be especially useful. In particular, since jRjz is nonnegative for any
real number z, Markov’s inequality also applies to the event Œ jRjz � xz�. But for
positive x; z > 0 this event is equivalent to the event Œ jRj � x� for , so we have:

Lemma 20.2.1. For any random variable R and positive real numbers x; z,

PrŒjRj � x� �
ExŒ jRjz�
xz

:

Rephrasing (20.2.1) in terms of jR � ExŒR� j, the random variable that measures
R’s deviation from its mean, we get

PrŒ jR � ExŒR� j � x� �
ExŒ.jR � ExŒR�j/z�

xz
: (20.4)
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When z is positive and even, .R � ExŒR�/z is nonnegative, so the absolute value
on the right-hand side of the inequality (20.4) is redundant. The case when z D 2

turns out to be so important that the numerator of the right-hand side has been given
a name:

Definition 20.2.2. The variance of a random variable R is:

VarŒR� WWD Ex
�
.R � ExŒR�/2

�
:

Variance is also known as mean square deviation.
The restatement of (20.4) for z D 2 is known as Chebyshev’s Theorem.1

Theorem 20.2.3 (Chebyshev). Let R be a random variable and x 2 RC. Then

PrŒjR � ExŒR� j � x� �
VarŒR�
x2

:

The expression ExŒ.R � ExŒR�/2� for variance is a bit cryptic; the best approach
is to work through it from the inside out. The innermost expression R � ExŒR� is
precisely the deviation ofR above its mean. Squaring this, we obtain .R�ExŒR�/2.
This is a random variable that is near 0 when R is close to the mean and is a large
positive number when R deviates far above or below the mean. So if R is always
close to the mean, then the variance will be small. If R is often far from the mean,
then the variance will be large.

20.2.1 Variance in Two Gambling Games

The relevance of variance is apparent when we compare the following two gam-
bling games.

Game A: We win $2 with probability 2=3 and lose $1 with probability 1=3.
Game B: We win $1002 with probability 2=3 and lose $2001 with probability

1=3.
Which game is better financially? We have the same probability, 2/3, of winning

each game, but that does not tell the whole story. What about the expected return for
each game? Let random variables A and B be the payoffs for the two games. For
example, A is 2 with probability 2/3 and -1 with probability 1/3. We can compute
the expected payoff for each game as follows:

ExŒA� D 2 �
2

3
C .�1/ �

1

3
D 1;

ExŒB� D 1002 �
2

3
C .�2001/ �

1

3
D 1:

1There are Chebyshev Theorems in several other disciplines, but Theorem 20.2.3 is the only one
we’ll refer to.
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The expected payoff is the same for both games, but the games are very different.
This difference is not apparent in their expected value, but is captured by variance.
We can compute the VarŒA� by working “from the inside out” as follows:

A � ExŒA� D
�
1 with probability 2

3

�2 with probability 1
3

.A � ExŒA�/2 D
�
1 with probability 2

3

4 with probability 1
3

ExŒ.A � ExŒA�/2� D 1 �
2

3
C 4 �

1

3
VarŒA� D 2:

Similarly, we have for VarŒB�:

B � ExŒB� D
�
1001 with probability 2

3

�2002 with probability 1
3

.B � ExŒB�/2 D
�
1; 002; 001 with probability 2

3

4; 008; 004 with probability 1
3

ExŒ.B � ExŒB�/2� D 1; 002; 001 �
2

3
C 4; 008; 004 �

1

3
VarŒB� D 2; 004; 002:

The variance of Game A is 2 and the variance of Game B is more than two
million! Intuitively, this means that the payoff in Game A is usually close to the
expected value of $1, but the payoff in Game B can deviate very far from this
expected value.

High variance is often associated with high risk. For example, in ten rounds of
Game A, we expect to make $10, but could conceivably lose $10 instead. On the
other hand, in ten rounds of game B, we also expect to make $10, but could actually
lose more than $20,000!

20.2.2 Standard Deviation

In Game B above, the deviation from the mean is 1001 in one outcome and -2002
in the other. But the variance is a whopping 2,004,002. The happens because the
“units” of variance are wrong: if the random variable is in dollars, then the expec-
tation is also in dollars, but the variance is in square dollars. For this reason, people
often describe random variables using standard deviation instead of variance.

Definition 20.2.4. The standard deviation �R of a random variable R is the square
root of the variance:

�R WWD
p

VarŒR� D
q

ExŒ.R � ExŒR�/2�:
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mean

O.¢/

Figure 20.1 The standard deviation of a distribution indicates how wide the
“main part” of it is.

So the standard deviation is the square root of the mean square deviation, or
the root mean square for short. It has the same units—dollars in our example—as
the original random variable and as the mean. Intuitively, it measures the average
deviation from the mean, since we can think of the square root on the outside as
canceling the square on the inside.

Example 20.2.5. The standard deviation of the payoff in Game B is:

�B D
p

VarŒB� D
p
2; 004; 002 � 1416:

The random variable B actually deviates from the mean by either positive 1001
or negative 2002, so the standard deviation of 1416 describes this situation more
closely than the value in the millions of the variance.

For bell-shaped distributions like the one illustrated in Figure 20.1, the standard
deviation measures the “width” of the interval in which values are most likely to
fall. This can be more clearly explained by rephrasing Chebyshev’s Theorem in
terms of standard deviation, which we can do by substituting x D c�R in (20.1):

Corollary 20.2.6. Let R be a random variable, and let c be a positive real number.

PrŒjR � ExŒR�j � c�R� �
1

c2
: (20.5)

Now we see explicitly how the “likely” values of R are clustered in an O.�R/-
sized region around ExŒR�, confirming that the standard deviation measures how
spread out the distribution of R is around its mean.
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The IQ Example

The standard standard deviation of IQ’s regularly turns out to be about 15 even
across different populations. This additional fact along with the national average
IQ being 100 allows a better determination of the occurrence of IQ’s of 300 or
more.

Let the random variable R be the IQ of a random person. So ExŒR� D 100,
�R D 15 and R is nonnegative. We want to compute PrŒR � 300�.

We have already seen that Markov’s Theorem 20.1.1 gives a coarse bound, namely,

PrŒR � 300� �
1

3
:

Now we apply Chebyshev’s Theorem to the same problem:

PrŒR � 300� D PrŒjR � 100j � 200� �
VarŒR�
2002

D
152

2002
�

1

178
:

So Chebyshev’s Theorem implies that at most one person in 178 has an IQ of 300
or more. We have gotten a much tighter bound using additional information—the
variance of R—than we could get knowing only the expectation.

20.3 Properties of Variance

Variance is the average of the square of the distance from the mean. For this rea-
son, variance is sometimes called the “mean square deviation.” Then we take its
square root to get the standard deviation—which in turn is called “root mean square
deviation.”

But why bother squaring? Why not study the actual distance from the mean,
namely, the absolute value of R � ExŒR�, instead of its root mean square? The
answer is that variance and standard deviation have useful properties that make
them much more important in probability theory than average absolute deviation.
In this section, we’ll describe some of those properties. In the next section, we’ll
see why these properties are important.

20.3.1 A Formula for Variance

Applying linearity of expectation to the formula for variance yields a convenient
alternative formula.

Lemma 20.3.1.
VarŒR� D ExŒR2� � Ex2ŒR�;
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for any random variable R.

Here we use the notation Ex2ŒR� as shorthand for .ExŒR�/2.

Proof. Let � D ExŒR�. Then

VarŒR� D ExŒ.R � ExŒR�/2� (Def 20.2.2 of variance)

D ExŒ.R � �/2� (def of �)

D ExŒR2 � 2�RC �2�

D ExŒR2� � 2�ExŒR�C �2 (linearity of expectation)

D ExŒR2� � 2�2 C �2 (def of �)

D ExŒR2� � �2

D ExŒR2� � Ex2ŒR�: (def of �)

�

A simple and very useful formula for the variance of an indicator variable is an
immediate consequence.

Corollary 20.3.2. If B is a Bernoulli variable where p WWD PrŒB D 1� and q WWD
1 � p, then

VarŒB� D p � p2 D pq: (20.6)

Proof. By Lemma 19.4.2, ExŒB� D p. ButB only takes values 0 and 1, soB2 D B
and equation (20.6) follows immediately from Lemma 20.3.1. �

20.3.2 Variance of Time to Failure

According to Section 19.4.6, the mean time to failure is 1=p for a process that fails
during any given hour with probability p. What about the variance?

By Lemma 20.3.1,
VarŒC � D ExŒC 2� � .1=p/2 (20.7)

so all we need is a formula for ExŒC 2�.
Now ExŒC 2� WWD

P
i�1 i

2qi�1p by definition, and we could evaluate this series
using methods from Chapter 14 or 16.

A simpler alternative appeals to conditional expectation much as we did in Sec-
tion 19.4.6 to derive the formula for mean time to failure. Namely, the expected
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value of C 2 is the probability p of failure in the first hour times 12, plus the prob-
ability q of non-failure in the first hour times the expected value of .C C 1/2. So

ExŒC 2� D p � 12 C q ExŒ.C C 1/2�

D p C q

�
ExŒC 2�C

2

p
C 1

�
D p C q ExŒC 2�C q

�
2

p
C 1

�
; so

p ExŒC 2� D p C q
�
2

p
C 1

�
D
p2 C q.2C p/

p
and

ExŒC 2� D
2 � p

p2

Combining this with (20.7) proves

Lemma 20.3.3. If failures occur with probability p independently at each step, and
C is the number of steps until the first failure,2 then

VarŒC � D
q

p2
: (20.8)

20.3.3 Dealing with Constants

It helps to know how to calculate the variance of aRC b:

Theorem 20.3.4. [Square Multiple Rule for Variance] LetR be a random variable
and a a constant. Then

VarŒaR� D a2 VarŒR�: (20.9)

Proof. Beginning with the definition of variance and repeatedly applying linearity

2That is, C has the geometric distribution with parameter p according to Definition 19.4.7.
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of expectation, we have:

VarŒaR� WWD ExŒ.aR � ExŒaR�/2�

D ExŒ.aR/2 � 2aR ExŒaR�C Ex2ŒaR��

D ExŒ.aR/2� � ExŒ2aR ExŒaR��C Ex2ŒaR�

D a2 ExŒR2� � 2ExŒaR�ExŒaR�C Ex2ŒaR�

D a2 ExŒR2� � a2 Ex2ŒR�

D a2
�
ExŒR2� � Ex2ŒR�

�
D a2 VarŒR� (Lemma 20.3.1)

�

It’s even simpler to prove that adding a constant does not change the variance, as
the reader can verify:

Theorem 20.3.5. Let R be a random variable, and b a constant. Then

VarŒRC b� D VarŒR�: (20.10)

Recalling that the standard deviation is the square root of variance, this implies
that the standard deviation of aR C b is simply jaj times the standard deviation of
R:

Corollary 20.3.6.
�.aRCb/ D jaj �R:

20.3.4 Variance of a Sum

In general, the variance of a sum is not equal to the sum of the variances, but
variances do add for independent variables. In fact, mutual independence is not
necessary: pairwise independence will do. This is useful to know because there are
some important situations, such as Birthday Matching in Section 17.4, that involve
variables that are pairwise independent but not mutually independent.

Theorem 20.3.7. If R and S are independent random variables, then

VarŒRC S� D VarŒR�C VarŒS�: (20.11)

Proof. We may assume that ExŒR� D 0, since we could always replace R by
R � ExŒR� in equation (20.11); likewise for S . This substitution preserves the
independence of the variables, and by Theorem 20.3.5, does not change the vari-
ances.
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But for any variable T with expectation zero, we have VarŒT � D ExŒT 2�, so we
need only prove

ExŒ.RC S/2� D ExŒR2�C ExŒS2�: (20.12)

But (20.12) follows from linearity of expectation and the fact that

ExŒRS� D ExŒR�ExŒS� (20.13)

since R and S are independent:

ExŒ.RC S/2� D ExŒR2 C 2RS C S2�

D ExŒR2�C 2ExŒRS�C ExŒS2�

D ExŒR2�C 2ExŒR�ExŒS�C ExŒS2� (by (20.13))

D ExŒR2�C 2 � 0 � 0C ExŒS2�

D ExŒR2�C ExŒS2�:

�

It’s easy to see that additivity of variance does not generally hold for variables
that are not independent. For example, if R D S , then equation (20.11) becomes
VarŒRCR� D VarŒR�CVarŒR�. By the Square Multiple Rule, Theorem 20.3.4, this
holds iff 4VarŒR� D 2VarŒR�, which implies that VarŒR� D 0. So equation (20.11)
fails when R D S and R has nonzero variance.

The proof of Theorem 20.3.7 carries over to the sum of any finite number of
variables (Problem 20.18), so we have:

Theorem 20.3.8. [Pairwise Independent Additivity of Variance] If R1; R2; : : : ; Rn
are pairwise independent random variables, then

VarŒR1 CR2 C � � � CRn� D VarŒR1�C VarŒR2�C � � � C VarŒRn�: (20.14)

Now we have a simple way of computing the variance of a variable J that has
an .n; p/-binomial distribution. We know that J D

Pn
kD1 Ik where the Ik are

mutually independent indicator variables with PrŒIk D 1� D p. The variance of
each Ik is pq by Corollary 20.3.2, so by linearity of variance, we have

Lemma 20.3.9 (Variance of the Binomial Distribution). If J has the .n; p/-binomial
distribution, then

VarŒJ � D nVarŒIk� D npq: (20.15)
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20.3.5 Matching Birthdays

We saw in Section 17.4 that in a class of 95 students, it is virtually certain that
at least one pair of students will have the same birthday. In fact, several pairs of
students are likely to have the same birthday. How many matched birthdays should
we expect, and how likely are we to see that many matches in a random group of
students?

Having matching birthdays for different pairs of students are not mutually inde-
pendent events. If Alice matches Bob and Alice matches Carol, it’s certain that Bob
and Carol match as well! So the events that various pairs of students have matching
birthdays are not even three-way independent.

But knowing that Alice’s birthday matches Bob’s tells us nothing about who
Carol matches. This means that the events that a pair of people have matching
birthdays are pairwise independent (see Problem 19.2). So pairwise independent
additivity of variance, Theorem 20.3.8, will allow us to calculate the variance of
the number of birthday pairs and then apply Chebyshev’s bound to estimate the
liklihood of seeing some given number of matching pairs.

In particular, suppose there are n students and d days in the year, and letM be the
number of pairs of students with matching birthdays. Namely, let B1; B2; : : : ; Bn
be the birthdays of n independently chosen people, and let Ei;j be the indicator
variable for the event that the i th and j th people chosen have the same birthdays,
that is, the event ŒBi D Bj �. So in our probability model, the Bi ’s are mutually
independent variables, and the Ei;j ’s are pairwise independent. Also, the expecta-
tions of Ei;j for i ¤ j equals the probability that Bi D Bj , namely, 1=d .

Now the numberM of matching pairs of birthdays among the n choices is simply
the sum of the Ei;j ’s:

M D
X

1�i<j�n

Ei;j : (20.16)

Linearity of expectation make it easy to calculate the expected number of pairs of
students with matching birthdays.

ExŒM � D Ex

24 X
1�i<j�n

Ei;j

35 D X
1�i<j�n

ExŒEi;j � D

 
n

2

!
�
1

d
:
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Similarly, pairwise independence makes it easy to calculate the variance.

VarŒM � D Var

24 X
1�i<j�n

Ei;j

35
D

X
1�i<j�n

VarŒEi;j � (Theorem 20.3.8)

D

 
n

2

!
�
1

d

�
1 �

1

d

�
: (Corollary 20.3.2)

In particular, for a class of n D 95 students with d D 365 possible birthdays, we
have ExŒM � � 12:23 and VarŒM � � 12:23.1�1=365/ < 12:2. So by Chebyshev’s
Theorem

PrŒjM � ExŒM �j � x� <
12:2

x2
:

Letting x D 7, we conclude that there is a better than 75% chance that in a class of
95 students, the number of pairs of students with the same birthday will be within
7 of 12.23, that is, between 6 and 19.

20.4 Estimation by Random Sampling

Massachusetts Democrats were astonished in 2010 when their early polls of sample
voters showed Republican Scott Brown was favored by a majority of voters and so
would win the special election to fill the Senate seat that the late Democrat Teddy
Kennedy had occupied for over 40 years. Based on their poll results, they mounted
an intense, but ultimately unsuccessful, effort to save the seat for their party.

20.4.1 A Voter Poll

Suppose at some time before the election that p was the fraction of voters favoring
Scott Brown. We want to estimate this unknown fraction p. Suppose we have
some random process for selecting voters from registration lists that selects each
voter with equal probability. We can define an indicator variable K by the rule that
K D 1 if the random voter most prefers Brown, and K D 0 otherwise.

Now to estimate p, we take a large number n of random choices of voters3 and
3We’re choosing a random voter n times with replacement. We don’t remove a chosen voter from

the set of voters eligible to be chosen later; so we might choose the same voter more than once!
We would get a slightly better estimate if we required n different people to be chosen, but doing so
complicates both the selection process and its analysis for little gain.
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count the fraction who favor Brown. That is, we define variables K1; K2; : : : ,
where Ki is interpreted to be the indicator variable for the event that the i th cho-
sen voter prefers Brown. Since our choices are made independently, the Ki ’s are
independent. So formally, we model our estimation process by assuming we have
mutually independent indicator variables K1; K2; : : : ; each with the same proba-
bility p of being equal to 1. Now let Sn be their sum, that is,

Sn WWD

nX
iD1

Ki : (20.17)

The variable Sn=n describes the fraction of sampled voters who favor Scott Brown.
Most people intuitively, and correctly, expect this sample fraction to give a useful
approximation to the unknown fraction p.

So we will use the sample value Sn=n as our statistical estimate of p. We know
that Sn has a binomial distribution with parameters n and p; we can choose n, but
p is unknown.

How Large a Sample?

Suppose we want our estimate to be within 0:04 of the fraction p at least 95% of
the time. This means we want

Pr
� ˇ̌̌̌
Sn

n
� p

ˇ̌̌̌
� 0:04

�
� 0:95 : (20.18)

So we’d better determine the number n of times we must poll voters so that in-
equality (20.18) will hold. Chebyshev’s Theorem offers a simple way to determine
such a n.
Sn is binomially distributed. Equation (20.15), combined with the fact that pq

is maximized when p D q, that is, when p D 1=2 (check for yourself!), gives

VarŒSn� D n.pq/ � n �
1

4
D
n

4
: (20.19)

Next, we bound the variance of Sn=n:

Var
�
Sn

n

�
D

�
1

n

�2
VarŒSn� (Square Multiple Rule for Variance (20.9))

�

�
1

n

�2 n
4

(by (20.19))

D
1

4n
(20.20)



“mcs” — 2017/6/5 — 19:42 — page 886 — #894

Chapter 20 Deviation from the Mean886

Using Chebyshev’s bound and (20.20) we have:

Pr
� ˇ̌̌̌
Sn

n
� p

ˇ̌̌̌
� 0:04

�
�

VarŒSn=n�
.0:04/2

�
1

4n.0:04/2
D
156:25

n
(20.21)

To make our our estimate with 95% confidence, we want the right-hand side
of (20.21) to be at most 1/20. So we choose n so that

156:25

n
�
1

20
;

that is,
n � 3; 125:

Section 20.6.2 describes how to get tighter estimates of the tails of binomial
distributions that lead to a bound on n that is about four times smaller than the
one above. But working through this example using only the variance illustrates
an approach to estimation that is applicable to arbitrary random variables, not just
binomial variables.

20.4.2 Pairwise Independent Sampling

The reasoning we used above to analyze voter polling and matching birthdays is
very similar. We summarize it in slightly more general form with a basic result
called the Pairwise Independent Sampling Theorem. In particular, we do not need
to restrict ourselves to sums of zero-one valued variables, or to variables with the
same distribution. For simplicity, we state the Theorem for pairwise independent
variables with possibly different distributions but with the same mean and variance.

Theorem 20.4.1 (Pairwise Independent Sampling). Let G1; : : : ; Gn be pairwise
independent variables with the same mean � and deviation � . Define

Sn WWD

nX
iD1

Gi : (20.22)

Then

Pr
� ˇ̌̌̌
Sn

n
� �

ˇ̌̌̌
� x

�
�
1

n

��
x

�2
:
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Proof. We observe first that the expectation of Sn=n is �:

Ex
�
Sn

n

�
D Ex

�Pn
iD1Gi

n

�
(def of Sn)

D

Pn
iD1 ExŒGi �

n
(linearity of expectation)

D

Pn
iD1 �

n

D
n�

n
D �:

The second important property of Sn=n is that its variance is the variance of Gi
divided by n:

Var
�
Sn

n

�
D

�
1

n

�2
VarŒSn� (Square Multiple Rule for Variance (20.9))

D
1

n2
Var

"
nX
iD1

Gi

#
(def of Sn)

D
1

n2

nX
iD1

VarŒGi � (pairwise independent additivity)

D
1

n2
� n�2 D

�2

n
: (20.23)

This is enough to apply Chebyshev’s Theorem and conclude:

Pr
� ˇ̌̌̌
Sn

n
� �

ˇ̌̌̌
� x

�
�

Var
�
Sn=n

�
x2

: (Chebyshev’s bound)

D
�2=n

x2
(by (20.23))

D
1

n

��
x

�2
:

�

The Pairwise Independent Sampling Theorem provides a quantitative general
statement about how the average of independent samples of a random variable ap-
proaches the mean. In particular, it proves what is known as the Law of Large
Numbers:4 by choosing a large enough sample size, we can get arbitrarily accurate
estimates of the mean with confidence arbitrarily close to 100%.

4This is the Weak Law of Large Numbers. As you might suppose, there is also a Strong Law, but
it’s outside the scope of 6.042.
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Corollary 20.4.2. [Weak Law of Large Numbers] Let G1; : : : ; Gn be pairwise in-
dependent variables with the same mean �, and the same finite deviation, and let

Sn WWD

Pn
iD1Gi

n
:

Then for every � > 0,
lim
n!1

PrŒjSn � �j � �� D 1:

20.5 Confidence in an Estimation

So Chebyshev’s Bound implies that sampling 3,125 voters will yield a fraction that,
95% of the time, is within 0.04 of the actual fraction of the voting population who
prefer Brown.

Notice that the actual size of the voting population was never considered because
it did not matter. People who have not studied probability theory often insist that
the population size should influence the sample size. But our analysis shows that
polling a little over 3000 people people is always sufficient, regardless of whether
there are ten thousand, or a million, or a billion voters. You should think about
an intuitive explanation that might persuade someone who thinks population size
matters.

Now suppose a pollster actually takes a sample of 3,125 random voters to esti-
mate the fraction of voters who prefer Brown, and the pollster finds that 1250 of
them prefer Brown. It’s tempting, but sloppy, to say that this means:

False Claim. With probability 0.95, the fraction p of voters who prefer Brown is
1250=3125 ˙ 0:04. Since 1250=3125 � 0:04 > 1=3, there is a 95% chance that
more than a third of the voters prefer Brown to all other candidates.

As already discussed in Section 18.9, what’s objectionable about this statement
is that it talks about the probability or “chance” that a real world fact is true, namely
that the actual fraction p of voters favoring Brown is more than 1/3. But p is what
it is, and it simply makes no sense to talk about the probability that it is something
else. For example, suppose p is actually 0.3; then it’s nonsense to ask about the
probability that it is within 0.04 of 1250/3125. It simply isn’t.

This example of voter preference is typical: we want to estimate a fixed, un-
known real-world quantity. But being unknown does not make this quantity a ran-
dom variable, so it makes no sense to talk about the probability that it has some
property.

A more careful summary of what we have accomplished goes this way:
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We have described a probabilistic procedure for estimating the value
of the actual fraction p. The probability that our estimation procedure
will yield a value within 0.04 of p is 0.95.

This is a bit of a mouthful, so special phrasing closer to the sloppy language is
commonly used. The pollster would describe his conclusion by saying that

At the 95% confidence level, the fraction of voters who prefer Brown
is 1250=3125˙ 0:04.

So confidence levels refer to the results of estimation procedures for real-world
quantities. The phrase “confidence level” should be heard as a reminder that some
statistical procedure was used to obtain an estimate. To judge the credibility of the
estimate, it may be important to examine how well this procedure was performed.
More important, the confidence assertion above can be rephrased as

Either the fraction of voters who prefer Brown is 1250=3125 ˙ 0:04
or something unlikely (probability 1/20) happened.

If our experience led us to judge that having the preference fraction actually be in
this particular interval was unlikely, then this level of confidence would justifiably
remain unconvincing.

20.6 Sums of Random Variables

If all you know about a random variable is its mean and variance, then Cheby-
shev’s Theorem is the best you can do when it comes to bounding the probabil-
ity that the random variable deviates from its mean. In some cases, however, we
know more—for example, that the random variable has a binomial distribution—
and then it is possible to prove much stronger bounds. Instead of polynomially
small bounds such as 1=c2, we can sometimes even obtain exponentially small
bounds such as 1=ec . As we will soon discover, this is the case whenever the ran-
dom variable T is the sum of nmutually independent random variables T1, T2, . . . ,
Tn where 0 � Ti � 1. A random variable with a binomial distribution is just one
of many examples of such a T .

20.6.1 A Motivating Example

Fussbook is a new social networking site oriented toward unpleasant people. Like
all major web services, Fussbook has a load balancing problem: it receives lots of
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forum posts that computer servers have to process. If any server is assigned more
work than it can complete in a given interval, then it is overloaded and system
performance suffers. That would be bad, because Fussbook users are not a tolerant
bunch. So balancing the work load across mutliple servers is vital.

An early idea was to assign each server an alphabetic range of forum topics.
(“That oughta work!”, one programmer said.) But after the computer handling the
“privacy” and “preferred text editor” threads melted from overload, the drawback
of an ad hoc approach was clear: it’s easy to miss something that will mess up your
plan.

If the length of every task were known in advance, then finding a balanced distri-
bution would be a kind of “bin packing” problem. Such problems are hard to solve
exactly, but approximation algorithms can come close. Unfortunately, in this case
task lengths are not known in advance, which is typical of workload problems in
the real world.

So the load balancing problem seems sort of hopeless, because there is no data
available to guide decisions. So the programmers of Fussbook gave up and just
randomly assigned posts to computers. Imagine their surprise when the system
stayed up and hasn’t crashed yet!

As it turns out, random assignment not only balances load reasonably well, but
also permits provable performance guarantees. In general, a randomized approach
to a problem is worth considering when a deterministic solution is hard to compute
or requires unavailable information.

Specifically, Fussbook receives 24,000 forum posts in every 10-minute interval.
Each post is assigned to one of several servers for processing, and each server
works sequentially through its assigned tasks. It takes a server an average of 1=4
second to process a post. Some posts, such as pointless grammar critiques and snide
witticisms, are easier, but no post—not even the most protracted harangues—takes
more than one full second.

Measuring workload in seconds, this means a server is overloaded when it is
assigned more than 600 units of work in a given 600 second interval. Fussbook’s
average processing load of 24;000 � 1=4 D 6000 seconds per interval would keep
10 computers running at 100% capacity with perfect load balancing. Surely, more
than 10 servers are needed to cope with random fluctuations in task length and
imperfect load balance. But would 11 be enough? . . . or 15, 20, 100? We’ll answer
that question with a new mathematical tool.
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20.6.2 The Chernoff Bound

The Chernoff5 bound is a hammer that you can use to nail a great many problems.
Roughly, the Chernoff bound says that certain random variables are very unlikely
to significantly exceed their expectation. For example, if the expected load on
a processor is just a bit below its capacity, then that processor is unlikely to be
overloaded, provided the conditions of the Chernoff bound are satisfied.

More precisely, the Chernoff Bound says that the sum of lots of little, indepen-
dent, random variables is unlikely to significantly exceed the mean of the sum. The
Markov and Chebyshev bounds lead to the same kind of conclusion but typically
provide much weaker bounds. In particular, the Markov and Chebyshev bounds are
polynomial, while the Chernoff bound is exponential.

Here is the theorem. The proof will come later in Section 20.6.6.

Theorem 20.6.1 (Chernoff Bound). Let T1; : : : Tn be mutually independent ran-
dom variables such that 0 � Ti � 1 for all i . Let T D T1 C � � � C Tn. Then for all
c � 1,

PrŒT � c ExŒT �� � e�ˇ.c/ExŒT � (20.24)

where ˇ.c/ WWD c ln c � c C 1.

The Chernoff bound applies only to distributions of sums of independent random
variables that take on values in the real interval Œ0; 1�. The binomial distribution is
the most well-known distribution that fits these criteria, but many others are possi-
ble, because the Chernoff bound allows the variables in the sum to have differing,
arbitrary, or even unknown distributions over the range Œ0; 1�. Furthermore, there is
no direct dependence on either the number of random variables in the sum or their
expectations. In short, the Chernoff bound gives strong results for lots of problems
based on little information—no wonder it is widely used!

20.6.3 Chernoff Bound for Binomial Tails

The Chernoff bound can be applied in easy steps, though the details can be daunting
at first. Let’s walk through a simple example to get the hang of it: bounding the
probability that the number of heads that come up in 1000 independent tosses of a
coin exceeds the expectation by 20% or more. Let Ti be an indicator variable for
the event that the i th coin is heads. Then the total number of heads is

T D T1 C � � � C T1000:

5Yes, this is the same Chernoff who figured out how to beat the state lottery—this guy knows a
thing or two.
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The Chernoff bound requires that the random variables Ti be mutually independent
and take on values in the range Œ0; 1�. Both conditions hold here. In this example
the Ti ’s only take the two values 0 and 1, since they’re indicators.

The goal is to bound the probability that the number of heads exceeds its expec-
tation by 20% or more; that is, to bound PrŒT � c ExŒT �� where c = 1:2. To that
end, we compute ˇ.c/ as defined in the theorem:

ˇ.c/ D c ln.c/ � c C 1 D 0:0187 : : : :

If we assume the coin is fair, then ExŒT � D 500. Plugging these values into the
Chernoff bound gives:

Pr
�
T � 1:2ExŒT �

�
� e�ˇ.c/:ExŒT �

D e�.0:0187::: /�500 < 0:0000834:

So the probability of getting 20% or more extra heads on 1000 coins is less than 1
in 10,000.

The bound rapidly becomes much smaller as the number of coins increases, be-
cause the expected number of heads appears in the exponent of the upper bound.
For example, the probability of getting at least 20% extra heads on a million coins
is at most

e�.0:0187::: /�500000 < e�9392;

which is an inconceivably small number.
Alternatively, the bound also becomes stronger for larger deviations. For exam-

ple, suppose we’re interested in the odds of getting 30% or more extra heads in
1000 tosses, rather than 20%. In that case, c D 1:3 instead of 1:2. Consequently,
the parameter ˇ.c/ rises from 0:0187 to about 0:0410, which may not seem sig-
nificant, but because ˇ.c/ appears in the exponent of the upper bound, the final
probability decreases from around 1 in 10,000 to about 1 in a billion!

20.6.4 Chernoff Bound for a Lottery Game

Pick-4 is a lottery game in which you pay $1 to pick a 4-digit number between 0000
and 9999. If your number comes up in a random drawing, then you win $5,000.
Your chance of winning is 1 in 10,000. If 10 million people play, then the expected
number of winners is 1000. When there are exactly 1000 winners, the lottery keeps
$5 million of the $10 million paid for tickets. The lottery operator’s nightmare is
that the number of winners is much greater—especially at the point where more
than 2000 win and the lottery must pay out more than it received. What is the
probability that will happen?
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Let Ti be an indicator for the event that the i th player wins. Then T D T1C� � �C
Tn is the total number of winners. If we assume6 that the players’ picks and the
winning number are random, independent and uniform, then the indicators Ti are
independent, as required by the Chernoff bound.

Since 2000 winners would be twice the expected number, we choose c D 2,
compute ˇ.c/ D 0:386 : : : , and plug these values into the Chernoff bound:

PrŒT � 2000� D Pr
�
T � 2ExŒT �

�
� e�k ExŒT �

D e�.0:386::: /�1000

< e�386:

So there is almost no chance that the lottery operator pays out more than it took in.
In fact, the number of winners won’t even be 10% higher than expected very often.
To prove that, let c D 1:1, compute ˇ.c/ D 0:00484 : : : , and plug in again:

Pr
�
T � 1:1ExŒT �

�
� e�k ExŒT �

D e�.0:00484/�1000 < 0:01:

So the Pick-4 lottery may be exciting for the players, but the lottery operator has
little doubt as to the outcome!

20.6.5 Randomized Load Balancing

Now let’s return to Fussbook and its load balancing problem. Specifically, we need
to determine a number m of servers that makes it very unlikely that any server is
overloaded by being assigned more than 600 seconds of work in a given interval.

To begin, let’s find the probability that the first server is overloaded. Letting T be
the number of seconds of work assigned to the first server, this means we want an
upper bound on PrŒT � 600�. Let Ti be the number of seconds that the first server
spends on the i th task: then Ti is zero if the task is assigned to another machine,
and otherwise Ti is the length of the task. So T D

Pn
iD1 Ti is the total number of

seconds of work assigned to the first server, where n D 24;000.
The Chernoff bound is applicable only if the Ti are mutually independent and

take on values in the range Œ0; 1�. The first condition is satisfied if we assume that
assignment of a post to a server is independent of the time required to process the
post. The second condition is satisfied because we know that no post takes more
than 1 second to process; this is why we chose to measure work in seconds.

6As we noted in Chapter 19, human choices are often not uniform and they can be highly de-
pendent. For example, lots of people will pick an important date. The lottery folks should not get
too much comfort from the analysis that follows, unless they assign random 4-digit numbers to each
player.
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In all, there are 24,000 tasks, each with an expected length of 1/4 second. Since
tasks are assigned to the m servers at random, the expected load on the first server
is:

ExŒT � D
24;000 tasks � 1=4 second per task

m servers
D 6000=m seconds: (20.25)

So if there are fewer than 10 servers, then the expected load on the first server is
greater than its capacity, and we can expect it to be overloaded. If there are exactly
10 servers, then the server is expected to run for 6000=10 D 600 seconds, which is
100% of its capacity.

Now we can use the Chernoff bound based on the number of servers to bound
the probability that the first server is overloaded. We have from (20.25)

600 D c ExŒT � where c WWDm=10;

so by the Chernoff bound

PrŒT � 600� D PrŒT � c ExŒT �� � e�.c ln.c/�cC1/�6000=m;

The probability that some server is overloaded is at mostm times the probability
that the first server is overloaded, by the Union Bound in Section 17.5.2. So

PrŒsome server is overloaded� �
mX
iD1

PrŒserver i is overloaded�

D mPrŒthe first server is overloaded�

� me�.c ln.c/�cC1/�6000=m;

where c D m=10. Some values of this upper bound are tabulated below:

m D 11 W 0:784 : : :

m D 12 W 0:000999 : : :

m D 13 W 0:0000000760 : : : :

These values suggest that a system with m D 11 machines might suffer immediate
overload,m D 12machines could fail in a few days, butm D 13 should be fine for
a century or two!
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20.6.6 Proof of the Chernoff Bound

The proof of the Chernoff bound is somewhat involved. In fact, Chernoff himself
couldn’t come up with it: his friend, Herman Rubin, showed him the argument.
Thinking the bound not very significant, Chernoff did not credit Rubin in print. He
felt pretty bad when it became famous!7

Proof. (of Theorem 20.6.1)
For clarity, we’ll go through the proof “top down.” That is, we’ll use facts that

are proved immediately afterward.

The key step is to exponentiate both sides of the inequality T � c ExŒT � and

then apply the Markov bound:

PrŒT � c ExŒT �� D PrŒcT � cc ExŒT ��

�
ExŒcT �
cc ExŒT �

(Markov Bound)

�
e.c�1/ExŒT �

cc ExŒT �
(Lemma 20.6.2 below)

D
e.c�1/ExŒT �

ec ln.c/ExŒT �
D e�.c ln.c/�cC1/ExŒT �:

�

Algebra aside, there is a brilliant idea in this proof: in this context, exponenti-
ating somehow supercharges the Markov bound. This is not true in general! One
unfortunate side-effect of this supercharging is that we have to bound some nasty
expectations involving exponentials in order to complete the proof. This is done in
the two lemmas below, where variables take on values as in Theorem 20.6.1.

Lemma 20.6.2.
Ex
h
cT
i
� e.c�1/ExŒT �:

7See “A Conversation with Herman Chernoff,” Statistical Science 1996, Vol. 11, No. 4, pp 335–
350.
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Proof.

Ex
h
cT
i
D Ex

h
cT1C���CTn

i
(def of T )

D Ex
h
cT1 � � � cTn

i
D Ex

h
cT1

i
� � �ExŒcTn � (independent product Cor 19.5.7)

� e.c�1/ExŒT1� � � � e.c�1/ExŒTn� (Lemma 20.6.3 below)

D e.c�1/.ExŒT1�C���CExŒTn�/

D e.c�1/ExŒT1C���CTn� (linearity of ExŒ��)

D e.c�1/ExŒT �:

The third equality depends on the fact that functions of independent variables are
also independent (see Lemma 19.2.2). �

Lemma 20.6.3.
ExŒcTi � � e.c�1/ExŒTi �

Proof. All summations below range over values v taken by the random variable Ti ,
which are all required to be in the interval Œ0; 1�.

ExŒcTi � D
X

cv PrŒTi D v� (def of ExŒ��)

�

X
.1C .c � 1/v/PrŒTi D v� (convexity—see below)

D

X
PrŒTi D v�C .c � 1/v PrŒTi D v�

D

X
PrŒTi D v�C .c � 1/

X
v PrŒTi D v�

D 1C .c � 1/ExŒTi �

� e.c�1/ExŒTi � (since 1C z � ez):

The second step relies on the inequality

cv � 1C .c � 1/v;

which holds for all v in Œ0; 1� and c � 1. This follows from the general principle
that a convex function, namely cv, is less than the linear function 1 C .c � 1/v
between their points of intersection, namely v D 0 and 1. This inequality is why
the variables Ti are restricted to the real interval Œ0; 1�. �
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20.6.7 Comparing the Bounds

Suppose that we have a collection of mutually independent events A1, A2, . . . , An,
and we want to know how many of the events are likely to occur.

Let Ti be the indicator random variable for Ai and define

pi D PrŒTi D 1� D Pr
�
Ai
�

for 1 � i � n. Define
T D T1 C T2 C � � � C Tn

to be the number of events that occur.
We know from Linearity of Expectation that

ExŒT � D ExŒT1�C ExŒT2�C � � � C ExŒTn�

D

nX
iD1

pi :

This is true even if the events are not independent.
By Theorem 20.3.8, we also know that

VarŒT � D VarŒT1�C VarŒT2�C � � � C VarŒTn�

D

nX
iD1

pi .1 � pi /;

and thus that

�T D

vuut nX
iD1

pi .1 � pi /:

This is true even if the events are only pairwise independent.
Markov’s Theorem tells us that for any c > 1,

PrŒT � c ExŒT �� �
1

c
:

Chebyshev’s Theorem gives us the stronger result that

PrŒjT � ExŒT �j � c�T � �
1

c2
:

The Chernoff Bound gives us an even stronger result, namely, that for any c > 0,

PrŒT � ExŒT � � c ExŒT �� � e�.c ln.c/�cC1/ExŒT �:
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In this case, the probability of exceeding the mean by c ExŒT � decreases as an
exponentially small function of the deviation.

By considering the random variable n � T , we can also use the Chernoff Bound
to prove that the probability that T is much lower than ExŒT � is also exponentially
small.

20.6.8 Murphy’s Law

If the expectation of a random variable is much less than 1, then Markov’s Theorem
implies that there is only a small probability that the variable has a value of 1 or
more. On the other hand, a result that we call Murphy’s Law8 says that if a random
variable is an independent sum of 0–1-valued variables and has a large expectation,
then there is a huge probability of getting a value of at least 1.

Theorem 20.6.4 (Murphy’s Law). Let A1, A2, . . . , An be mutually independent
events. Let Ti be the indicator random variable for Ai and define

T WWD T1 C T2 C � � � C Tn

to be the number of events that occur. Then

PrŒT D 0� � e�ExŒT �:

Proof.

PrŒT D 0� D PrŒA1 \ A2 \ : : : \ An� (T D 0 iff no Ai occurs)

D

nY
iD1

PrŒAi � (independence of Ai )

D

nY
iD1

.1 � PrŒAi �/

�

nY
iD1

e�PrŒAi � (since 1 � x � e�x)

D e�
Pn

iD1 PrŒAi �

D e�
Pn

iD1 ExŒTi � (since Ti is an indicator for Ai )

D e�ExŒT � (linearity of expectation) �

8This is in reference and deference to the famous saying that “If something can go wrong, it
probably will.”
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For example, given any set of mutually independent events, if you expect 10 of
them to happen, then at least one of them will happen with probability at least 1 �
e�10. The probability that none of them happen is at most e�10 < 1=22000.

So if there are a lot of independent things that can go wrong and their probabil-
ities sum to a number much greater than 1, then Theorem 20.6.4 proves that some
of them surely will go wrong.

This result can help to explain “coincidences,” “miracles,” and crazy events that
seem to have been very unlikely to happen. Such events do happen, in part, because
there are so many possible unlikely events that the sum of their probabilities is
greater than one. For example, someone does win the lottery.

In fact, if there are 100,000 random tickets in Pick-4, Theorem 20.6.4 says that
the probability that there is no winner is less than e�10 < 1=22000. More generally,
there are literally millions of one-in-a-million possible events and so some of them
will surely occur.

20.7 Really Great Expectations

Making independent tosses of a fair coin until some desired pattern comes up is a
simple process you should feel solidly in command of by now, right? So how about
a bet about the simplest such process—tossing until a head comes up? Ok, you’re
wary of betting with us, but how about this: we’ll let you set the odds.

20.7.1 Repeating Yourself

Here’s the bet: you make independent tosses of a fair coin until a head comes up.
Then you will repeat the process. If a second head comes up in the same or fewer
tosses than the first, you have to start over yet again. You keep starting over until
you finally toss a run of tails longer than your first one. The payment rules are that
you will pay me 1 cent each time you start over. When you win by finally getting a
run of tails longer than your first one, I will pay you some generous amount. Notice
by the way that you’re certain to win—whatever your initial run of tails happened
to be, a longer run will eventually occur again with probability 1!

For example, if your first tosses are TTTH, then you will keep tossing until you
get a run of 4 tails. So your winning flips might be

TTTHTHTTHHTTHTHTTTHTHHHTTTT:

In this run there are 10 heads, which means you had to start over 9 times. So you
would have paid me 9 cents by the time you finally won by tossing 4 tails. Now
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you’ve won, and I’ll pay you generously —how does 25 cents sound? Maybe you’d
rather have $1? How about $1000?

Of course there’s a trap here. Let’s calculate your expected winnings.
Suppose your initial run of tails had length k. After that, each time a head comes

up, you have to start over and try to get kC1 tails in a row. If we regard your getting
k C 1 tails in a row as a “failed” try, and regard your having to start over because a
head came up too soon as a “successful” try, then the number of times you have to
start over is the number of tries till the first failure. So the expected number of tries
will be the mean time to failure, which is 2kC1, because the probability of tossing
k C 1 tails in a row is 2�.kC1/.

Let T be the length of your initial run of tails. So T D k means that your initial
tosses were TkH. Let R be the number of times you repeat trying to beat your
original run of tails. The number of cents you expect to finish with is the number
of cents in my generous payment minus ExŒR�. It’s now easy to calculate ExŒR� by
conditioning on the value of T :

ExŒR� D
X
k2N

ExŒR j T D k��PrŒT D k� D
X
k2N

2kC1�2�.kC1/ D 1C1C1C� � � D 1:

So you can expect to pay me an infinite number of cents before winning my
“generous” payment. No amount of generosity can make this bet fair! In fact this
particular example is a special case of an astonishingly general one: the expected
waiting time for any random variable to achieve a larger value remains infinite.

Problems for Section 20.1

Practice Problems

Problem 20.1.
The vast majority of people have an above average number of fingers. Which of
the following statements explain why this is true? Explain your reasoning.

1. Most people have a super secret extra bonus finger of which they are un-
aware.

2. A pedantic minority don’t count their thumbs as fingers, while the majority
of people do.

3. Polydactyly is rarer than amputation.
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4. When you add up the total number of fingers among the world’s population
and then divide by the size of the population, you get a number less than ten.

5. This follows from Markov’s Theorem, since no one has a negative number
of fingers.

6. Missing fingers are more common than extra ones.

Class Problems

Problem 20.2.
A herd of cows is stricken by an outbreak of cold cow disease. The disease lowers
a cow’s body temperature from normal levels, and a cow will die if its temperature
goes below 90 degrees F. The disease epidemic is so intense that it lowered the
average temperature of the herd to 85 degrees. Body temperatures as low as 70
degrees, but no lower, were actually found in the herd.

(a) Use Markov’s Bound 20.1.1 to prove that at most 3/4 of the cows could sur-
vive.

(b) Suppose there are 400 cows in the herd. Show that the bound from part (a)
is the best possible by giving an example set of temperatures for the cows so that
the average herd temperature is 85 and 3/4 of the cows will have a high enough
temperature to survive.

(c) Notice that the results of part (b) are purely arithmetic facts about averages,
not about probabilities. But you verified the claim in part (a) by applying Markov’s
bound on the deviation of a random variable. Justify this approach by regarding
the temperature T of a cow as a random variable. Carefully specify the probability
space on which T is defined: what are the sample points? what are their proba-
bilities? Explain the precise connection between properties of T and average herd
temperature that justifies the application of Markov’s Bound.

Homework Problems

Problem 20.3.
If R is a nonnegative random variable, then Markov’s Theorem gives an upper
bound on PrŒR � x� for any real number x > ExŒR�. If b is a lower bound on R,
then Markov’s Theorem can also be applied to R � b to obtain a possibly different
bound on PrŒR � x�.

(a) Show that if b > 0, applying Markov’s Theorem to R � b gives a smaller
upper bound on PrŒR � x� than simply applying Markov’s Theorem directly to R.
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(b) What value of b � 0 in part (a) gives the best bound?

Exam Problems

Problem 20.4.
A herd of cows is stricken by an outbreak of hot cow disease. The disease raises
the normal body temperature of a cow, and a cow will die if its temperature goes
above 90 degrees. The disease epidemic is so intense that it raised the average
temperature of the herd to 120 degrees. Body temperatures as high as 140 degrees,
but no higher, were actually found in the herd.
(a) Use Markov’s Bound 20.1.1 to prove that at most 2/5 of the cows could have

survived.

(b) Notice that the conclusion of part (a) is a purely arithmetic facts about aver-
ages, not about probabilities. But you verified the claim of part (a) by applying
Markov’s bound on the deviation of a random variable. Justify this approach by
explaining how to define a random variable T for the temperature of a cow. Care-
fully specify the probability space on which T is defined: what are the outcomes?
what are their probabilities? Explain the precise connection between properties of
T , average herd temperature, and fractions of the herd with various temperatures,
that justify application of Markov’s Bound.

Problems for Section 20.2

Exam Problems

Problem 20.5.
There is a herd of cows whose average body temperature turns out to be 100 de-
grees. Our thermometer produces such sensitive readings that no two cows have
exactly the same body temperature. The herd is stricken by an outbreak of wacky
cow disease, which will eventually kill any cow whose body temperature differs
from the average by 10 degrees or more.

It turns out that the collection-variance of all the body temperatures is 20, where
the collection-variance CVar.A/ of set A of numbers is

CVar.A/ WWD
P
a2A.a � �/

2

jAj
;

where � is the average value of the numbers in A.9

9CVar.A/ is called A’s mean square deviation.
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(a) Apply the Chebyshev bound to the temperature T of a random cow to show
that at most 20% of the cows will be killed by this disease outbreak.

The conclusion of part (a) about a certain fraction of the herd was derived by
bounding the deviation of a random variable. We can justify this approach by
explaining how to define a suitable probability space in which, the temperature
T of a cow is a random variable.

(b) Carefully specify the probability space on which T is defined: what are the
outcomes? what are their probabilities?

(c) Explain why for this probability space, the fraction of cows with any given
cow property P is the same as PrŒP �.

(CONTINUED ON NEXT PAGE)

(d) Show that VarŒT � equals the collection variance of the temperatures in the
herd.

Problems for Section 20.3

Practice Problems

Problem 20.6.
Suppose 120 students take a final exam and the mean of their scores is 90. You
have no other information about the students and the exam, that is, you should not
assume that the highest possible score is 100. You may, however, assume that exam
scores are nonnegative.

(a) State the best possible upper bound on the number of students who scored at
least 180.

(b) Now suppose somebody tells you that the lowest score on the exam is 30.
Compute the new best possible upper bound on the number of students who scored
at least 180.

Problem 20.7.
Suppose you flip a fair coin 100 times. The coin flips are all mutually independent.

(a) What is the expected number of heads?
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(b) What upper bound does Markov’s Theorem give for the probability that the
number of heads is at least 70?

(c) What is the variance of the number of heads?

(d) What upper bound does Chebyshev’s Theorem give for the probability that the
number of heads is either less than 30 or greater than 70?

Problem 20.8.
Albert has a gambling problem. He plays 240 hands of draw poker, 120 hands of
black jack, and 40 hands of stud poker per day. He wins a hand of draw poker with
probability 1/6, a hand of black jack with probability 1/2, and a hand of stud poker
with probability 1/5. Let W be the expected number of hands that Albert wins in a
day.
(a) What is ExŒW �?

(b) What would the Markov bound be on the probability that Albert will win at
least 216 hands on a given day?

(c) Assume the outcomes of the card games are pairwise independent. What is
VarŒW �? You may answer with a numerical expression that is not completely eval-
uated.

(d) What would the Chebyshev bound be on the probability that Albert will win
at least 216 hands on a given day? You may answer with a numerical expression
that includes the constant v D VarŒW �.

Class Problems

Problem 20.9.
The hat-check staff has had a long day serving at a party, and at the end of the party
they simply return the n checked hats in a random way such that the probability
that any particular person gets their own hat back is 1=n.

LetXi be the indicator variable for the i th person getting their own hat back. Let
Sn be the total number of people who get their own hat back.
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(a) What is the expected number of people who get their own hat back?

(b) Write a simple formula for ExŒXi �Xj � for i ¤ j .

Hint: What is the probability that the second person got their hat back, given that
the fifth person got their hat back, that is, Pr

�
X2 D 1 j X5 D 1

�
?

(c) Explain why you cannot use the variance of sums formula to calculate VarŒSn�.

(d) Show that ExŒ.Sn/2� D 2. Hint: .Xi /2 D Xi .

(e) What is the variance of Sn?

(f) Show that there is at most a 1% chance that more than 10 people get their own
hat back.

Problem 20.10.
For any random variable R with mean � and standard deviation � the Chebyshev
bound says that for any real number x > 0,

PrŒjR � �j � x� �
��
x

�2
:

Show that for any real number � and real numbers x � � > 0, there is an R for
which the Chebyshev bound is tight, that is,

PrŒjR � �j � x� D
��
x

�2
: (20.26)

Hint: First assume � D 0 and let R take only the values 0;�x and x.

Problem 20.11.
A computer program crashes at the end of each hour of use with probability 1=p,
if it has not crashed already. Let H be the number of hours until the first crash.
(a) What is the Chebyshev bound on

PrŒjH � .1=p/j > x=p�

where x > 0?

(b) Conclude from part (a) that for a � 2,

PrŒH > a=p� �
1 � p

.a � 1/2
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Hint: Check that jH � .1=p/j > .a � 1/=p iff H > a=p.

(c) What actually is
PrŒH > a=p�‹

Conclude that for any fixed p > 0, the probability that H > a=p is an asymptoti-
cally smaller function of a than the Chebyshev bound of part (b).

Problem 20.12.
Let R be a positive integer-valued random variable.

(a) How large can ExŒ1=R� be?

(b) How large can VarŒR� be if the only values of R are 1 and 2?

(c) How large can VarŒR� be if ExŒR� D 2?

Problem 20.13.
A man has a set of n keys, one of which fits the door to his apartment. He tries the
keys randomly throwing away each ill-fitting key that he tries until he finds the key
that fits. That is, he chooses keys randomly from among those he has not yet tried.
This way he is sure to find the right key within n tries.

Let T be the number of times he tries keys until he finds the right key. Prob-
lem 19.25 shows that

ExŒT � D
nC 1

2
:

Write a closed formula for VarŒT �.

Homework Problems

Problem 20.14.
A man has a set of n keys, one of which fits the door to his apartment. He tries a
key at random, and if it does not fit the door, he simply puts it back; so he might try
the same ill-fitting key several times. He continues until he finds the one right key
that fits.

Let T be the number of times he tries keys until he finds the right key.

(a) Explain why

ExŒT � D n and VarŒT � D n.n � 1/:
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Let
fn.a/ WWD PrŒT � an�:

(b) Use the Chebyshev Bound to show that for any fixed n > 1,

fn.a/ D ‚

�
1

a2

�
: (20.27)

(c) Derive an upper bound for fn.a/ that for any fixed n > 1 is asymptoticaly
smaller than Chebyshev’s bound (20.27).

You may assume that n is large enough to use the approximation�
1 �

1

n

�cn
�

1

ec

Problem 20.15.
There is a fair coin and a biased coin that flips heads with probability 3=4. You are
given one of the coins, but you don’t know which. To determine which coin was
picked, your strategy will be to choose a number n and flip the picked coin n times.
If the number of heads flipped is closer to .3=4/n than to .1=2/n, you will guess
that the biased coin had been picked and otherwise you will guess that the fair coin
had been picked.

(a) Use the Chebyshev Bound to find a value n so that with probability 0.95 your
strategy makes the correct guess, no matter which coin was picked.

(b) Suppose you had access to a computer program that would generate, in the
form of a plot or table, the full binomial-.n; p/ probability density and cumulative
distribution functions. How would you find the minimum number of coin flips
needed to infer the identity of the chosen coin with probability 0.95? How would
you expect the number n determined this way to compare to the number obtained
in part(a)? (You do not need to determine the numerical value of this minimum n,
but we’d be interested to know if you did.)

(c) Now that we have determined the proper number n, we will assert that the
picked coin was the biased one whenever the number of Heads flipped is greater
than .5=8/n, and we will be right with probability 0.95. What, if anything, does
this imply about

Pr
�
picked coin was biased j # Heads flipped � .5=8/n

�
‹
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Problem 20.16.
The expected absolute deviation of a real-valued random variable R with mean �,
is defined to be

ExŒ jR � �j �:

Prove that the expected absolute deviation is always less than or equal to the stan-
dard deviation � . (For simplicity, you may assume that R is defined on a finite
sample space.)

Hint: Suppose the sample space outcomes are !1; !2; : : : ; !n, and let

p WWD .p1; p2; : : : ; pn/ where pi D
p

PrŒ!i �;

r WWD .r1; r2; : : : ; rn/ where ri D jR.!i / � �j
p

PrŒ!i �:

As usual, let v � w WWD
Pn
iD1 viui denote the dot product of n-vectors v;w, and let

jvj be the norm of v, namely,
p

v � v.
Then verify that

jpj D 1; jrj D �; and ExŒ jR � �j � D r � p:

Problem 20.17.
Prove the following “one-sided” version of the Chebyshev bound for deviation
above the mean:

Lemma (One-sided Chebyshev bound).

PrŒR � ExŒR� � x� �
VarŒR�

x2 C VarŒR�
:

Hint: Let Sa WWD .R � ExŒR� C a/2, for 0 � a 2 R. So R � ExŒR� � x

implies Sa � .xC a/2. Apply Markov’s bound to PrŒSa � .xC a/2�. Choose a to
minimize this last bound.

Problem 20.18.
Prove the pairwise independent additivity of variance Theorem 20.3.8: IfR1; R2; : : : ; Rn
are pairwise independent random variables, then

VarŒR1 CR2 C � � � CRn� D VarŒR1�C VarŒR2�C � � � C VarŒRn�: (*)

Hint: Why is it OK to assume ExŒRi � D 0?



“mcs” — 2017/6/5 — 19:42 — page 909 — #917

20.7. Really Great Expectations 909

Exam Problems

Problem 20.19.
You are playing a game where you get n turns. Each of your turns involves flipping
a coin a number of times. On the first turn, you have 1 flip, on the second turn you
have two flips, and so on until your nth turn when you flip the coin n times. All the
flips are mutually independent.

The coin you are using is biased to flip Heads with probability p. You win a turn
if you flip all Heads. Let W be the number of winning turns.
(a) Write a closed-form (no summations) expression for ExŒW �.

(b) Write a closed-form expression for VarŒW �.

Problem 20.20.
Let Kn be the complete graph with n vertices. Each of the edges of the graph
will be randomly assigned one of the colors red, green, or blue. The assignments
of colors to edges are mutually independent, and the probability of an edge being
assigned red is r , blue is b, and green is g (so r C b C g D 1).

A set of three vertices in the graph is called a triangle. A triangle is monochro-
matic if the three edges connecting the vertices are all the same color.
(a) Let m be the probability that any given triangle T is monochromatic. Write a

simple formula for m in terms of r; b; and g.

(b) Let IT be the indicator variable for whether T is monochromatic. Write simple
formulas in terms of m; r; b and g for ExŒIT � and VarŒIT �.

Let T and U be distinct triangles.
(c) What is the probability that T and U are both monochromatic if they do not

share an edge?. . . if they do share an edge?

Now assume r D b D g D
1

3
.

(d) Show that IT and IU are independent random variables.

(e) Let M be the number of monochromatic triangles. Write simple formulas in
terms of n and m for ExŒM � and VarŒM �.
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(f) Let � WWD ExŒM �. Use Chebyshev’s Bound to prove that

Pr
h
jM � �j >

p
� log�

i
�

1

log�
:

(g) Conclude that

lim
n!1

Pr
h
jM � �j >

p
� log�

i
D 0

Problem 20.21.
You have a biased coin which flips Heads with probability p. You flip the coin n
times. The coin flips are all mutually independent. Let H be the number of Heads.

(a) Write a simple expression in terms of p and n for ExŒH �, the expected number
of Heads.

(b) Write a simple expression in terms of p and n for VarŒH �, the variance of the
number of Heads.

(c) Write a simple expression in terms of p for the upper bound that Markov’s
Theorem gives for the probability that the number of Heads is larger than the ex-
pected number by at least 1% of the number of flips, that is, by n=100.

(d) Show that the bound Chebyshev’s Theorem gives for the probability that H
differs from ExŒH � by at least n=100 is

1002
p.1 � p/

n
:

(e) The bound in part (d) implies that if you flip at least m times for a certain
number m, then there is a 95% chance that the proportion of Heads among these m
flips will be within 0.01 of p. Write a simple expression for m in terms of p.

Problem 20.22.
A classroom has sixteen desks in a 4 � 4 arrangement as shown below.



“mcs” — 2017/6/5 — 19:42 — page 911 — #919

20.7. Really Great Expectations 911

If two desks are next to each other, vertically or horizontally, they are called an
adjacent pair. So there are three horizontally adjacent pairs in each row, for a total
of twelve horizontally adjacent pairs. Likewise, there are twelve vertically adjacent
pairs. An adjacent pair D of desks is said to have a flirtation when there is a boy at
one desk and a girl at the other desk.

(a) Suppose boys and girls are assigned to desks in some unknown probabilistic
way. What is the Markov bound on the probability that the number of flirtations is
at least 33 1/3% more than expected?

Suppose that boys and girls are actually assigned to desks mutually indepen-
dently, with probability p of a desk being occupied by a boy, where 0 < p < 1.

(b) Express the expected number of flirtations in terms of p.

Hint: Let ID be the indicator variable for a flirtation at D.

Different pairs D and E of adjacent desks are said to overlap when they share
a desk. For example, the first and second pairs in each row overlap, and so do the
second and third pairs, but the first and third pairs do not overlap.

(c) Prove that ifD andE overlap, and p D 1=2, then ID and IE are independent.

(d) When p D 1=2, what is the variance of the number of flirtations?

(e) What upper bound does Chebyshev’s Theorem give on the probability that the
number of heads is either less than 30 or greater than 70?

(f) Let D and E be pairs of adjacent desks that overlap. Prove that if p ¤ 1=2,
then FD and FE are not independent.
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(g) Find four pairs of desksD1;D2;D3;D4 and explain whyFD1
; FD2

; FD3
; FD4

are not mutually independent (even if p D 1=2).

Problems for Section 20.5

Class Problems

Problem 20.23.
A recent Gallup poll found that 35% of the adult population of the United States
believes that the theory of evolution is “well-supported by the evidence.” Gallup
polled 1928 Americans selected uniformly and independently at random. Of these,
675 asserted belief in evolution, leading to Gallup’s estimate that the fraction of
Americans who believe in evolution is 675=1928 � 0:350. Gallup claims a margin
of error of 3 percentage points, that is, he claims to be confident that his estimate is
within 0.03 of the actual percentage.
(a) What is the largest variance an indicator variable can have?

(b) Use the Pairwise Independent Sampling Theorem to determine a confidence
level with which Gallup can make his claim.

(c) Gallup actually claims greater than 99% confidence in his estimate. How
might he have arrived at this conclusion? (Just explain what quantity he could
calculate; you do not need to carry out a calculation.)

(d) Accepting the accuracy of all of Gallup’s polling data and calculations, can
you conclude that there is a high probability that the percentage of adult Americans
who believe in evolution is 35˙ 3 percent?

Problem 20.24.
Let B1; B2; : : : ; Bn be mutually independent random variables with a uniform dis-
tribution on the integer interval Œ1::d �. Let Ei;j be the indicator variable for the
event ŒBi D Bj �.

Let M equal the number of events ŒBi D Bj � that are true, where 1 � i < j �

n. So
M D

X
1�i<j�n

Ei;j :

It was observed in Section 17.4 (and proved in Problem 19.2) that PrŒBi D
Bj � D 1=d for i ¤ j and that the random variables Ei;j , where 1 � i < j � n,



“mcs” — 2017/6/5 — 19:42 — page 913 — #921

20.7. Really Great Expectations 913

are pairwise independent.

(a) What are ExŒEi;j � and VarŒEi;j � for i ¤ j ?

(b) What are ExŒM � and VarŒM �?

(c) In a 6.01 class of 500 students, the youngest student was born 15 years ago
and the oldest 35 years ago. Show that more than half the time, there will be will be
between 12 and 23 pairs of students who have the same birth date. (For simplicity,
assume that the distribution of birthdays is uniform over the 7305 days in the two
decade interval from 35 years ago to 15 years ago.)

Hint: LetD be the number of pairs of students in the class who have the same birth
date. Note that jD � ExŒD�j < 6 IFF D 2 Œ12::23�.

Problem 20.25.
A defendent in traffic court is trying to beat a speeding ticket on the grounds that—
since virtually everybody speeds on the turnpike—the police have unconstitutional
discretion in giving tickets to anyone they choose. (By the way, we don’t recom-
mend this defense :-).)

To support his argument, the defendent arranged to get a random sample of trips
by 3,125 cars on the turnpike and found that 94% of them broke the speed limit
at some point during their trip. He says that as a consequence of sampling theory
(in particular, the Pairwise Independent Sampling Theorem), the court can be 95%
confident that the actual percentage of all cars that were speeding is 94˙ 4%.

The judge observes that the actual number of car trips on the turnpike was never
considered in making this estimate. He is skeptical that, whether there were a
thousand, a million, or 100,000,000 car trips on the turnpike, sampling only 3,125
is sufficient to be so confident.

Suppose you were were the defendent. How would you explain to the judge
why the number of randomly selected cars that have to be checked for speeding
does not depend on the number of recorded trips? Remember that judges are not
trained to understand formulas, so you have to provide an intuitive, nonquantitative
explanation.

Problem 20.26.
The proof of the Pairwise Independent Sampling Theorem 20.4.1 was given for
a sequence R1; R2; : : : of pairwise independent random variables with the same
mean and variance.
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The theorem generalizes straighforwardly to sequences of pairwise independent
random variables, possibly with different distributions, as long as all their variances
are bounded by some constant.

Theorem (Generalized Pairwise Independent Sampling). Let X1; X2; : : : be a se-
quence of pairwise independent random variables such that VarŒXi � � b for some
b � 0 and all i � 1. Let

An WWD
X1 CX2 C � � � CXn

n
;

�n WWD ExŒAn�:

Then for every � > 0,

PrŒjAn � �nj � �� �
b

�2
�
1

n
: (20.28)

(a) Prove the Generalized Pairwise Independent Sampling Theorem.

(b) Conclude that the following holds:
Corollary (Generalized Weak Law of Large Numbers). For every � > 0,

lim
n!1

PrŒjAn � �nj � �� D 1:

Problem 20.27.
Let G1; G2; G3; : : : ; be an infinite sequence of pairwise independent random vari-
ables with the same expectation � and the same finite variance. Let

f .n; �/ WWD Pr
� ˇ̌̌̌Pn

iD1Gi

n
� �

ˇ̌̌̌
� �

�
:

The Weak Law of Large Numbers can be expressed as a logical formula of the
form:

Q0 Q1 Q2 Q3: f .n; �/ � 1 � ı

where Q0;Q1;Q2;Q3 is a sequence of four quantifiers from among:

8n; 9n; 8n � n0; 9n � n0:

8n0; 9n0; 8n0 � n; 9n0 � n:

8ı; 9ı; 8ı > 0; 9ı > 0:

8�; 9�; 8� > 0; 9� > 0:

Here the n; n0 range over nonnegative integers, and ı; � range over nonnegative
real numbers.

Write out the proper sequence Q0;Q1;Q2;Q3.
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Exam Problems

Problem 20.28.
You work for the president and you want to estimate the fraction p of voters in the
entire nation that will prefer him in the upcoming elections. You do this by random
sampling. Specifically, you select a random voter and ask them who they are going
to vote for. You do this n times, with each voter selected with uniform probability
and independently of other selections. Finally, you use the fraction P of voters
who said they will vote for the President as an estimate for p.

(a) Our theorems about sampling and distributions allow us to calculate how con-
fident we can be that the random variable P takes a value near the constant p. This
calculation uses some facts about voters and the way they are chosen. Indicate the
true facts among the following:

1. Given a particular voter, the probability of that voter preferring the President
is p.

2. The probability that some voter is chosen more than once in the random sam-
ple goes to one as n increases.

3. The probability that some voter is chosen more than once in the random sam-
ple goes to zero as the population of voters grows.

4. All voters are equally likely to be selected as the third in the random sample
of n voters (assuming n � 3).

5. The probability that the second voter in the random sample will favor the
President, given that the first voter prefers the President, is greater than p.

6. The probability that the second voter in the random sample will favor the
President, given that the second voter is from the same state as the first, may
not equal p.

(b) Suppose that according to your calculations, the following is true about your
polling:

PrŒjP � pj � 0:04� � 0:95:

You do the asking, you count how many said they will vote for the President, you
divide by n, and find the fraction is 0.53. Among the following, Indicate the legiti-
mate things you might say in a call to the President:

1. Mr. President, p D 0:53!

2. Mr. President, with probability at least 95 percent, p is within 0.04 of 0.53.
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3. Mr. President, either p is within 0.04 of 0.53 or something very strange (5-
in-100) has happened.

4. Mr. President, we can be 95% confident that p is within 0.04 of 0.53.

Problem 20.29.
Yesterday, the programmers at a local company wrote a large program. To estimate
the fraction b of lines of code in this program that are buggy, the QA team will
take a small sample of lines chosen randomly and independently (so it is possible,
though unlikely, that the same line of code might be chosen more than once). For
each line chosen, they can run tests that determine whether that line of code is
buggy, after which they will use the fraction of buggy lines in their sample as their
estimate of the fraction b.

The company statistician can use estimates of a binomial distribution to calculate
a value s for a number of lines of code to sample which ensures that with 97%
confidence, the fraction of buggy lines in the sample will be within 0.006 of the
actual fraction b of buggy lines in the program.

Mathematically, the program is an actual outcome that already happened. The
random sample is a random variable defined by the process for randomly choosing
s lines from the program. The justification for the statistician’s confidence depends
on some properties of the program and how the random sample of s lines of code
from the program are chosen. These properties are described in some of the state-
ments below. Indicate which of these statements are true, and explain your answers.

1. The probability that the ninth line of code in the program is buggy is b.

2. The probability that the ninth line of code chosen for the random sample is
defective is b.

3. All lines of code in the program are equally likely to be the third line chosen
in the random sample.

4. Given that the first line chosen for the random sample is buggy, the probabil-
ity that the second line chosen will also be buggy is greater than b.

5. Given that the last line in the program is buggy, the probability that the next-
to-last line in the program will also be buggy is greater than b.

6. The expectation of the indicator variable for the last line in the random sam-
ple being buggy is b.
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7. Given that the first two lines of code selected in the random sample are the
same kind of statement—they might both be assignment statements, or both
be conditional statements, or both loop statements,. . . —the probability that
the first line is buggy may be greater than b.

8. There is zero probability that all the lines in the random sample will be dif-
ferent.

Problems for Section 20.6

Practice Problems

Problem 20.30.
A gambler plays 120 hands of draw poker, 60 hands of black jack, and 20 hands of
stud poker per day. He wins a hand of draw poker with probability 1/6, a hand of
black jack with probability 1/2, and a hand of stud poker with probability 1/5.

(a) What is the expected number of hands the gambler wins in a day?

(b) What would the Markov bound be on the probability that the gambler will win
at least 108 hands on a given day?

(c) Assume the outcomes of the card games are pairwise, but possibly not mutu-
ally, independent. What is the variance in the number of hands won per day? You
may answer with a numerical expression that is not completely evaluated.

(d) What would the Chebyshev bound be on the probability that the gambler will
win at least 108 hands on a given day? You may answer with a numerical expres-
sion that is not completely evaluated.

(e) Assuming outcomes of the card games are mutually independent, show that
the probability that the gambler will win at least 108 hands on a given day is much
smaller than the bound in part (d). Hint: e1�2 ln2 � 0:7

Class Problems

Problem 20.31.
We want to store 2 billion records into a hash table that has 1 billion slots. Assum-
ing the records are randomly and independently chosen with uniform probability
of being assigned to each slot, two records are expected to be stored in each slot.
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Of course under a random assignment, some slots may be assigned more than two
records.
(a) Show that the probability that a given slot gets assigned more than 23 records

is less than e�36.

Hint: Use Chernoff’s Bound, Theorem 20.6.1,. Note that ˇ.12/ > 18, where
ˇ.c/ WWD c ln c � c C 1.

(b) Show that the probability that there is a slot that gets assigned more than 23
records is less than e�15, which is less than 1=3; 000; 000. Hint: 109 < e21; use
part (a).

a

Problem 20.32.
Sometimes I forget a few items when I leave the house in the morning. For example,
here are probabilities that I forget various pieces of footwear:

left sock 0:2

right sock 0:1

left shoe 0:1

right shoe 0:3

(a) Let X be the number of these that I forget. What is ExŒX�?

(b) Give a tight upper bound on the probability that I forget one or more items
when no independence assumption is made about forgetting different items.

(c) Use the Markov Bound to derive an upper bound on the probability that I
forget 3 or more items.

(d) Now suppose that I forget each item of footwear independently. Use the
Chebyshev Bound to derive an upper bound on the probability that I forget two
or more items.

(e) Use Murphy’s Law, Theorem 20.6.4, to derive a lower bound on the probabil-
ity that I forget one or more items.

(f) I’m supposed to remember many other items, of course: clothing, watch, back-
pack, notebook, pencil, kleenex, ID, keys, etc. Let X be the total number of items
I remember. Suppose I remember items mutually independently and ExŒX� D 36.
Use Chernoff’s Bound to give an upper bound on the probability that I remember
48 or more items.
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(g) Give an upper bound on the probability that I remember 108 or more items.

Problem 20.33.
Reasoning based on the Chernoff bound goes a long way in explaining the recent
subprime mortgage collapse. A bit of standard vocabulary about the mortgage
market is needed:

� A loan is money lent to a borrower. If the borrower does not pay on the
loan, the loan is said to be in default, and collateral is seized. In the case of
mortgage loans, the borrower’s home is used as collateral.

� A bond is a collection of loans, packaged into one entity. A bond can be
divided into tranches, in some ordering, which tell us how to assign losses
from defaults. Suppose a bond contains 1000 loans, and is divided into 10
tranches of 100 bonds each. Then, all the defaults must fill up the lowest
tranche before the affect others. For example, suppose 150 defaults hap-
pened. Then, the first 100 defaults would occur in tranche 1, and the next 50
defaults would happen in tranche 2.

� The lowest tranche of a bond is called the mezzanine tranche.

� We can make a “super bond” of tranches called a collateralized debt obli-
gation (CDO) by collecting mezzanine tranches from different bonds. This
super bond can then be itself separated into tranches, which are again ordered
to indicate how to assign losses.

(a) Suppose that 1000 loans make up a bond, and the fail rate is 5% in a year.
Assuming mutual independence, give an upper bound for the probability that there
are one or more failures in the second-worst tranche. What is the probability that
there are failures in the best tranche?

(b) Now, do not assume that the loans are independent. Give an upper bound for
the probability that there are one or more failures in the second tranche. What is an
upper bound for the probability that the entire bond defaults? Show that it is a tight
bound. Hint: Use Markov’s theorem.

(c) Given this setup (and assuming mutual independence between the loans), what
is the expected failure rate in the mezzanine tranche?

(d) We take the mezzanine tranches from 100 bonds and create a CDO. What is
the expected number of underlying failures to hit the CDO?
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(e) We divide this CDO into 10 tranches of 1000 bonds each. Assuming mutual
independence, give an upper bound on the probability of one or more failures in the
best tranche. The third tranche?

(f) Repeat the previous question without the assumption of mutual independence.

Homework Problems

Problem 20.34.
We have two coins: one is a fair coin, but the other produces heads with probability
3=4. One of the two coins is picked, and this coin is tossed n times. Use the
Chernoff Bound to determine the smallest n which allows determination of which
coin was picked with 95% confidence.

Problem 20.35.
An infinite version of Murphy’s Law is that if an infinite number of mutually inde-
pendent events are expected to happen, then the probability that only finitely many
happen is 0. This is known as the first Borel-Cantelli Lemma.

(a) Let A0; A1; : : : be any infinite sequence of mutually independent events such
that X

n2N

PrŒAn� D1: (20.29)

Prove that PrŒno An occurs� D 0.

Hint: Bk the event that no An with n � k occurs. So the event that no An occurs is

B WWD
\
k2N

Bk :

Apply Murphy’s Law, Theorem 20.6.4, to Bk .

(b) Conclude that PrŒonly finitely many An’s occur� D 0.

Hint: Let Ck be the event that no An with n � k occurs. So the event that only
finitely many An’s occur is

C WWD
[
k2N

Ck :

Apply part (a) to Ck .
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Problems for Section 20.7

Practice Problems

Problem 20.36.
Let R be a positive integer valued random variable such that

PDFR.n/ D
1

cn3
;

where

c WWD

1X
nD1

1

n3
:

(a) Prove that ExŒR� is finite.

(b) Prove that VarŒR� is infinite.

A joking way to phrase the point of this example is “the square root of infinity may
be finite.” Namely, let T WWD R2; then part (b) implies that ExŒT � D 1 while
ExŒ
p
T � <1 by (a).

Class Problems

Problem 20.37.
You have a biased coin with nonzero probability p < 1 of tossing a Head. You
toss until a Head comes up. Then, similar to the example in Section 20.7, you
keep tossing until you get another Head preceded by a run of consecutive Tails
whose length is within 10 of your original run. That is, if you began by tossing k
tails followed by a Head, then you continue tossing until you get a run of at least
maxfk � 10; 0g consecutive Tails.

(a) Let H be the number of Heads that you toss until you get the required run of
Tails. Prove that the expected value of H is infinite.

(b) Let r < 1 be a positive real number. Instead of waiting for a run of Tails of
length k � 10 when your original run was length k, just wait for a run of length at
least rk. Show that in this case, the expected number of Heads is finite.

Exam Problems

Problem 20.38.
You have a random process for generating a positive integer K. The behavior of
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your process each time you use it is (mutually) independent of all its other uses. You
use your process to generate an integer, and then use your procedure repeatedly
until you generate an integer as big as your first one. Let R be the number of
additional integers you have to generate.

(a) State and briefly explain a simple closed formula for ExŒR j K D k� in terms
of PrŒK � k�.

Suppose PrŒK D k� D ‚.k�4/.

(b) Show that PrŒK � k� D ‚.k�3/.

(c) Show that ExŒR� is infinite.


