
“mcs” — 2018/6/6 — 13:43 — page 421 — #429

10 Directed graphs & Partial Orders
Directed graphs, called digraphs for short, provide a handy way to represent how
things are connected together and how to get from one thing to another by following
those connections. They are usually pictured as a bunch of dots or circles with
arrows between some of the dots, as in Figure 10.1. The dots are called nodes or
vertices and the lines are called directed edges or arrows; the digraph in Figure 10.1
has 4 nodes and 6 directed edges.

Digraphs appear everywhere in computer science. For example, the digraph in
Figure 10.2 represents a communication net, a topic we’ll explore in depth in Chap-
ter 11. Figure 10.2 has three “in” nodes (pictured as little squares) representing
locations where packets may arrive at the net, the three “out” nodes representing
destination locations for packets, and the remaining six nodes (pictured with lit-
tle circles) represent switches. The 16 edges indicate paths that packets can take
through the router.

Another place digraphs emerge in computer science is in the hyperlink structure
of the World Wide Web. Letting the vertices x1; : : : ; xn correspond to web pages,
and using arrows to indicate when one page has a hyperlink to another, results in a
digraph like the one in Figure 10.3—although the graph of the real World Wide Web
would have n be a number in the billions and probably even the trillions. At first
glance, this graph wouldn’t seem to be very interesting. But in 1995, two students
at Stanford, Larry Page and Sergey Brin, ultimately became multibillionaires from
the realization of how useful the structure of this graph could be in building a search
engine. So pay attention to graph theory, and who knows what might happen!

a c

b

d

Figure 10.1 A 4-node directed graph with 6 edges.

“mcs” — 2018/6/6 — 13:43 — page 422 — #430

Chapter 10 Directed graphs & Partial Orders422

in2in1in0

out0 out1 out2

Figure 10.2 A 6-switch packet routing digraph.

x1

x3 x4

x7

x6

x2
x5

Figure 10.3 Links among Web Pages.

“mcs” — 2018/6/6 — 13:43 — page 423 — #431

10.1. Vertex Degrees 423

u v

e headtail

Figure 10.4 A directed edge e D hu!vi. The edge e starts at the tail vertex u
and ends at the head vertex v.

Definition 10.0.1. A directed graphG consists of a nonempty set V.G/, called the
vertices of G, and a set E.G/, called the edges of G. An element of V.G/ is called
a vertex. A vertex is also called a node; the words “vertex” and “node” are used
interchangeably. An element of E.G/ is called a directed edge. A directed edge is
also called an “arrow” or simply an “edge.” A directed edge starts at some vertex
u called the tail of the edge, and ends at some vertex v called the head of the edge,
as in Figure 10.4. Such an edge can be represented by the ordered pair .u; v/. The
notation hu!vi denotes this edge.

There is nothing new in Definition 10.0.1 except for a lot of vocabulary. For-
mally, a digraph G is the same as a binary relation on the set, V D V.G/—that is,
a digraph is just a binary relation whose domain and codomain are the same set V .
In fact, we’ve already referred to the arrows in a relation G as the “graph” of G.
For example, the divisibility relation on the integers in the interval Œ1::12� could be
pictured by the digraph in Figure 10.5.

10.1 Vertex Degrees

The in-degree of a vertex in a digraph is the number of arrows coming into it, and
similarly its out-degree is the number of arrows out of it. More precisely,

Definition 10.1.1. If G is a digraph and v 2 V.G/, then

indeg.v/ WWD jfe 2 E.G/ j head.e/ D vgj

outdeg.v/ WWD jfe 2 E.G/ j tail.e/ D vgj

An immediate consequence of this definition is

Lemma 10.1.2. X
v2V.G/

indeg.v/ D
X

v2V.G/

outdeg.v/:

Proof. Both sums are equal to jE.G/j. �

“mcs” — 2018/6/6 — 13:43 — page 424 — #432

Chapter 10 Directed graphs & Partial Orders424

12 6 1

824 10

5

7

1193

Figure 10.5 The Digraph for Divisibility on f1; 2; : : : ; 12g.

10.2 Walks and Paths

Picturing digraphs with points and arrows makes it natural to talk about following
successive edges through the graph. For example, in the digraph of Figure 10.5,
you might start at vertex 1, successively follow the edges from vertex 1 to vertex
2, from 2 to 4, from 4 to 12, and then from 12 to 12 twice (or as many times as
you like). The sequence of edges followed in this way is called a walk through the
graph. A path is a walk which never visits a vertex more than once. So following
edges from 1 to 2 to 4 to 12 is a path, but it stops being a path if you go to 12 again.

The natural way to represent a walk is with the sequence of sucessive vertices it
went through, in this case:

1 2 4 12 12 12:

However, it is conventional to represent a walk by an alternating sequence of suc-
cessive vertices and edges, so this walk would formally be

1 h1!2i 2 h2!4i 4 h4!12i 12 h12!12i 12 h12!12i 12: (10.1)

The redundancy of this definition is enough to make any computer scientist cringe,
but it does make it easy to talk about how many times vertices and edges occur on
the walk. Here is a formal definition:

Definition 10.2.1. A walk in a digraph is an alternating sequence of vertices and
edges that begins with a vertex, ends with a vertex, and such that for every edge
hu!vi in the walk, vertex u is the element just before the edge, and vertex v is the
next element after the edge.

“mcs” — 2018/6/6 — 13:43 — page 425 — #433

10.2. Walks and Paths 425

So a walk v is a sequence of the form

v WWD v0 hv0!v1i v1 hv1!v2i v2 : : : hvk�1!vki vk

where hvi!viC1i 2 E.G/ for i 2 [0..k). The walk is said to start at v0, to end at
vk , and the length jvj of the walk is defined to be k.

The walk is a path iff all the vi ’s are different, that is, if i ¤ j , then vi ¤ vj .
A closed walk is a walk that begins and ends at the same vertex. A cycle is a

positive length closed walk whose vertices are distinct except for the beginning and
end vertices.

Note that a single vertex counts as a length zero path that begins and ends at itself.
It also is a closed walk, but does not count as a cycle, since cycles by definition
must have positive length. Length one cycles are possible when a node has an
arrow leading back to itself. The graph in Figure 10.1 has none, but every vertex in
the divisibility relation digraph of Figure 10.5 is in a length one cycle. Length one
cycles are sometimes called self-loops.

Although a walk is officially an alternating sequence of vertices and edges, it
is completely determined just by the sequence of successive vertices on it, or by
the sequence of edges on it. We will describe walks in these ways whenever it’s
convenient. For example, for the graph in Figure 10.1,

� .a; b; d/, or simply abd , is a (vertex-sequence description of a) length two
path,

� .ha!bi ; hb!d i/, or simply ha!bi hb!d i, is (an edge-sequence de-
scription of) the same length two path,

� abcbd is a length four walk,

� dcbcbd is a length five closed walk,

� bdcb is a length three cycle,

� hb!ci hc!bi is a length two cycle, and

� hc!bi hb ai ha!d i is not a walk. A walk is not allowed to follow edges
in the wrong direction.

If you walk for a while, stop for a rest at some vertex, and then continue walking,
you have broken a walk into two parts. For example, stopping to rest after following
two edges in the walk (10.1) through the divisibility graph breaks the walk into the
first part of the walk

1 h1!2i 2 h2!4i 4 (10.2)

“mcs” — 2018/6/6 — 13:43 — page 426 — #434

Chapter 10 Directed graphs & Partial Orders426

from 1 to 4, and the rest of the walk

4 h4!12i 12 h12!12i 12 h12!12i 12: (10.3)

from 4 to 12, and we’ll say the whole walk (10.1) is the merge of the walks (10.2)
and (10.3). In general, if a walk f ends with a vertex v and a walk r starts with
the same vertex v we’ll say that their merge fbr is the walk that starts with f and
continues with r.1 Two walks can only be merged if the first walk ends at the same
vertex v with which the second one walk starts. Sometimes it’s useful to name the
node v where the walks merge; we’ll use the notation fbv r to describe the merge of
a walk f that ends at v with a walk r that begins at v.

A consequence of this definition is that

Lemma 10.2.2.
jfbrj D jfj C jrj:

In the next section we’ll get mileage out of walking this way.

10.2.1 Finding a Path

If you were trying to walk somewhere quickly, you’d know you were in trouble if
you came to the same place twice. This is actually a basic theorem of graph theory.

Theorem 10.2.3. A shortest walk from one vertex to another is a path.

Proof. If there is a walk from vertex u to another vertex v ¤ u, then by the Well
Ordering Principle, there must be a minimum length walk w from u to v. We claim
w is a path.

To prove the claim, suppose to the contrary that w is not a path, meaning that
some vertex x occurs twice on this walk. That is,

w D ebx fbx g

for some walks e; f; g where the length of f is positive. But then “deleting” f yields
a strictly shorter walk

ebx g

from u to v, contradicting the minimality of w. �

Definition 10.2.4. The distance, dist .u; v/, in a graph from vertex u to vertex v is
the length of a shortest path from u to v.

1It’s tempting to say the merge is the concatenation of the two walks, but that wouldn’t quite be
right because if the walks were concatenated, the vertex v would appear twice in a row where the
walks meet.

“mcs” — 2018/6/6 — 13:43 — page 427 — #435

10.3. Adjacency Matrices 427

As would be expected, this definition of distance satisfies:

Lemma 10.2.5. [The Triangle Inequality]

dist .u; v/ � dist .u; x/C dist .x; v/

for all vertices u; v; x with equality holding iff x is on a shortest path from u to v.

Of course, you might expect this property to be true, but distance has a technical
definition and its properties can’t be taken for granted. For example, unlike ordinary
distance in space, the distance from u to v is typically different from the distance
from v to u. So, let’s prove the Triangle Inequality

Proof. To prove the inequality, suppose f is a shortest path from u to x and r is
a shortest path from x to v. Then by Lemma 10.2.2, f bx r is a walk of length
dist .u; x/C dist .x; v/ from u to v, so this sum is an upper bound on the length of
the shortest path from u to v by Theorem 10.2.3.

Proof of the “iff” is in Problem 10.3. �

Finally, the relationship between walks and paths extends to closed walks and
cycles:

Lemma 10.2.6. The shortest positive length closed walk through a vertex is a cycle
through that vertex.

The proof of Lemma 10.2.6 is essentially the same as for Theorem 10.2.3; see
Problem 10.4.

10.3 Adjacency Matrices

If a graph G has n vertices v0; v1; : : : ; vn�1, a useful way to represent it is with an
n � n matrix of zeroes and ones called its adjacency matrix AG . The ij th entry of
the adjacency matrix, .AG/ij , is 1 if there is an edge from vertex vi to vertex vj
and 0 otherwise. That is,

.AG/ij WWD

(
1 if

˝
vi!vj

˛
2 E.G/;

0 otherwise:

“mcs” — 2018/6/6 — 13:43 — page 428 — #436

Chapter 10 Directed graphs & Partial Orders428

For example, letH be the 4-node graph shown in Figure 10.1. Its adjacency matrix
AH is the 4 � 4 matrix:

AH D

a b c d

a 0 1 0 1

b 0 0 1 1

c 0 1 0 0

d 0 0 1 0

A payoff of this representation is that we can use matrix powers to count numbers
of walks between vertices. For example, there are two length two walks between
vertices a and c in the graph H :

a ha!bi b hb!ci c

a ha!d i d hd!ci c

and these are the only length two walks from a to c. Also, there is exactly one
length two walk from b to c and exactly one length two walk from c to c and from
d to b, and these are the only length two walks in H . It turns out we could have
read these counts from the entries in the matrix .AH /2:

.AH /
2
D

a b c d

a 0 0 2 1

b 0 1 1 0

c 0 0 1 1

d 0 1 0 0

More generally, the matrix .AG/k provides a count of the number of length k
walks between vertices in any digraph G as we’ll now explain.

Definition 10.3.1. The length-k walk counting matrix for an n-vertex graph G is
the n � n matrix C such that

Cuv WWD the number of length-k walks from u to v: (10.4)

Notice that the adjacency matrix AG is the length-1 walk counting matrix for G,
and that .AG/0, which by convention is the identity matrix, is the length-0 walk
counting matrix.

Theorem 10.3.2. If C is the length-k walk counting matrix for a graph G, and D
is the length-m walk counting matrix, then CD is the length k Cm walk counting
matrix for G.

“mcs” — 2018/6/6 — 13:43 — page 429 — #437

10.3. Adjacency Matrices 429

According to this theorem, the square .AG/2 of the adjacency matrix is the length
two walk counting matrix for G. Applying the theorem again to .AG/2AG shows
that the length-3 walk counting matrix is .AG/3. More generally, it follows by
induction that

Corollary 10.3.3. The length-k counting matrix of a digraph G is .AG/k , for all
k 2 N.

In other words, you can determine the number of length k walks between any
pair of vertices simply by computing the kth power of the adjacency matrix!

That may seem amazing, but the proof uncovers this simple relationship between
matrix multiplication and numbers of walks.

Proof of Theorem 10.3.2. Any length .kCm/walk between vertices u and v begins
with a length k walk starting at u and ending at some vertexw followed by a length
m walk starting at w and ending at v. So the number of length .kCm/ walks from
u to v that go through w at the kth step equals the number Cuw of length k walks
from u to w, times the numberDwv of lengthm walks from w to v. We can get the
total number of length .k C m/ walks from u to v by summing, over all possible
vertices w, the number of such walks that go through w at the kth step. In other
words,

#length .k Cm/ walks from u to v D
X

w2V.G/

Cuw �Dwv (10.5)

But the right-hand side of (10.5) is precisely the definition of .CD/uv. Thus, CD
is indeed the length-.k Cm/ walk counting matrix. �

10.3.1 Shortest Paths

The relation between powers of the adjacency matrix and numbers of walks is
cool—to us math nerds at least—but a much more important problem is finding
shortest paths between pairs of nodes. For example, when you drive home for
vacation, you generally want to take the shortest-time route.

One simple way to find the lengths of all the shortest paths in an n-vertex graphG
is to compute the successive powers of AG one by one up to the n � 1st, watching
for the first power at which each entry becomes positive. That’s because Theo-
rem 10.3.2 implies that the length of the shortest path, if any, between u and v,
that is, the distance from u to v, will be the smallest value k for which .AG/kuv is
nonzero, and if there is a shortest path, its length will be � n � 1. Refinements of
this idea lead to methods that find shortest paths in reasonably efficient ways. The
methods apply as well to weighted graphs, where edges are labelled with weights
or costs and the objective is to find least weight, cheapest paths. These refinements

“mcs” — 2018/6/6 — 13:43 — page 430 — #438

Chapter 10 Directed graphs & Partial Orders430

are typically covered in introductory algorithm courses, and we won’t go into them
any further.

10.4 Walk Relations

A basic question about a digraph is whether there is a way to get from one particular
vertex to another. So for any digraph G we are interested in a binary relation G�,
called the walk relation on V.G/, where

u G� v WWD there is a walk in G from u to v: (10.6)

Similarly, there is a positive walk relation

u GC v WWD there is a positive length walk in G from u to v: (10.7)

Definition 10.4.1. When there is a walk from vertex v to vertex w, we say that w
is reachable from v, or equivalently, that v is connected to w.

10.4.1 Composition of Relations

There is a simple way to extend composition of functions to composition of rela-
tions, and this gives another way to talk about walks and paths in digraphs.

Definition 10.4.2. Let R W B ! C and S W A ! B be binary relations. Then the
composition of R with S is the binary relation .R ı S/ W A ! C defined by the
rule

a .R ı S/ c WWD 9b 2 B: .a S b/ AND .b R c/: (10.8)

This agrees with the Definition 4.3.1 of composition in the special case when R
and S are functions.2

Remembering that a digraph is a binary relation on its vertices, it makes sense to
compose a digraph G with itself. Then if we let Gn denote the composition of G
with itself n times, it’s easy to check (see Problem 10.11) that Gn is the length-n
walk relation:

a Gn b iff there is a length n walk in G from a to b:

2The reversal of the order of R and S in (10.8) is not a typo. This is so that relational composition
generalizes function composition. The value of function f composed with function g at an argument
x is f .g.x//. So in the composition f ı g, the function g is applied first.

“mcs” — 2018/6/6 — 13:43 — page 431 — #439

10.5. Directed Acyclic Graphs & Scheduling 431

This even works for n D 0, with the usual convention thatG0 is the identity relation
IdV.G/ on the set of vertices.3 Since there is a walk iff there is a path, and every
path is of length at most jV.G/j � 1, we now have4

G� D G0 [G1 [G2 [: : : [GjV.G/j�1 D .G [G0/jV.G/j�1: (10.9)

The final equality points to the use of repeated squaring as a way to compute G�

with logn rather than n � 1 compositions of relations.

10.5 Directed Acyclic Graphs & Scheduling

Some of the prerequisites of MIT computer science subjects are shown in Fig-
ure 10.6. An edge going from subject s to subject t indicates that s is listed in the
catalogue as a direct prerequisite of t . Of course, before you can take subject t ,
you have to take not only subject s, but also all the prerequisites of s, and any pre-
requisites of those prerequisites, and so on. We can state this precisely in terms of
the positive walk relation: if D is the direct prerequisite relation on subjects, then
subject u has to be completed before taking subject v iff u DC v.

Of course it would take forever to graduate if this direct prerequisite graph had
a positive length closed walk. We need to forbid such closed walks, which by
Lemma 10.2.6 is the same as forbidding cycles. So, the direct prerequisite graph
among subjects had better be acyclic:

Definition 10.5.1. A directed acyclic graph (DAG) is a directed graph with no
cycles.

DAGs have particular importance in computer science. They capture key con-
cepts used in analyzing task scheduling and concurrency control. When distributing
a program across multiple processors, we’re in trouble if one part of the program
needs an output that another part hasn’t generated yet! So let’s examine DAGs and
their connection to scheduling in more depth.

3The identity relation IdA on a set A is the equality relation:

a IdA b iff a D b;

for a; b 2 A.
4Equation (10.9) involves a harmless abuse of notation: we should have written

graph.G�/ D graph.G0/ [graph.G1/ : : : :

“mcs” — 2018/6/6 — 13:43 — page 432 — #440

Chapter 10 Directed graphs & Partial Orders432

New 6-3: SB in Computer Science and Engineering

All subjects are 12 units6.UAT
6 units

6.UAT6.UAT
6 units6 units

6.UAP
6 units

6.UAP6.UAP
6 units6 units

Subjects

Advanced Undergraduate Subjects
AUS http://www.eecs.mit.edu/ug/newcurriculum/aus.html

Advanced Undergraduate SubjectsAdvanced Undergraduate Subjects
AUS AUS http://http://www.eecs.mit.edu/ug/newcurriculum/aus.htmlwww.eecs.mit.edu/ug/newcurriculum/aus.html

2

1

3
Header

6.033
comp sys
6.0336.033
comp syscomp sys

6.034
AI

6.0346.034
AIAI

6.046
adv algorithms

6.0466.046
adv algorithmsadv algorithms

6.006*
algorithms
6.006*6.006*
algorithmsalgorithms

6.01*
intro EECS I
6.01*6.01*

intro EECS Iintro EECS I
6.02*

intro EECS II
6.02*6.02*

intro EECS IIintro EECS II

Software Lab
(http://www.eecs.mit.edu/ug/newcurriculum/verghese_6.005.html)

Software LabSoftware Lab
((http://www.eecs.mit.edu/ug/newcurriculum/verghese_6.005.html)http://www.eecs.mit.edu/ug/newcurriculum/verghese_6.005.html)

8.028.028.02

coreq

6.004
comp architecture

6.0046.004
comp architecturecomp architecture

coreq

3
Foundation

½ + ½

2
Introductory
(= 1 Institute Lab)

2
Math

(= 2 REST)

Elementary
exposure to programming
(high school, IAP, or 6.00)

Elementary Elementary
exposure to programmingexposure to programming
(high school, IAP, or 6.00)(high school, IAP, or 6.00)*new subjectJune 2009

18.06 or 18.03

18.06
linear algebra
18.0618.06

linear algebralinear algebra
18.03
diff eqs
18.0318.03
diff diff eqseqs

6.042
discrete math
6.0426.042

discrete mathdiscrete math

6.005*
software

6.005*6.005*
softwaresoftware

Figure 10.6 Subject prerequisites for MIT Computer Science (6-3) Majors.

“mcs” — 2018/6/6 — 13:43 — page 433 — #441

10.5. Directed Acyclic Graphs & Scheduling 433

underwear shirt

jacket

beltright shoeleft shoe

right sockleft sock

tiepants

Figure 10.7 DAG describing which garments to put on before others.

10.5.1 Scheduling

In a scheduling problem, there is a set of tasks, along with a set of constraints
specifying that starting certain tasks depends on other tasks being completed be-
forehand. We can map these sets to a digraph, with the tasks as the nodes and the
direct prerequisite constraints as the edges.

For example, the DAG in Figure 10.7 describes how a man might get dressed
for a formal occasion. As we describe above, vertices correspond to garments and
edges specify which garments have to be put on before others.

When faced with a set of prerequisites like this one, the most basic task is finding
an order in which to perform all the tasks, one at a time, while respecting the
dependency constraints. Ordering tasks in this way is known as topological sorting.

Definition 10.5.2. A topological sort of a finite DAG is a list of all the vertices
such that each vertex v appears earlier in the list than every other vertex reachable
from v.

There are many ways to get dressed one item at a time while obeying the con-
straints of Figure 10.7. We have listed two such topological sorts in Figure 10.8. In

“mcs” — 2018/6/6 — 13:43 — page 434 — #442

Chapter 10 Directed graphs & Partial Orders434

underwear left sock
shirt shirt
pants tie
belt underwear
tie right sock

jacket pants
left sock right shoe

right sock belt
left shoe jacket

right shoe left shoe

(a) (b)

Figure 10.8 Two possible topological sorts of the prerequisites described in Fig-
ure 10.7

.

fact, we can prove that every finite DAG has a topological sort. You can think of
this as a mathematical proof that you can indeed get dressed in the morning.

Topological sorts for finite DAGs are easy to construct by starting from minimal
elements:

Definition 10.5.3. An vertex v of a DAG D is minimum iff every other vertex is
reachable from v.

A vertex v is minimal iff v is not reachable from any other vertex.

It can seem peculiar to use the words “minimum” and “minimal” to talk about
vertices that start paths. These words come from the perspective that a vertex is
“smaller” than any other vertex it connects to. We’ll explore this way of thinking
about DAGs in the next section, but for now we’ll use these terms because they are
conventional.

One peculiarity of this terminology is that a DAG may have no minimum element
but lots of minimal elements. In particular, the clothing example has four minimal
elements: leftsock, rightsock, underwear, and shirt.

To build an order for getting dressed, we pick one of these minimal elements—
say, shirt. Now there is a new set of minimal elements; the three elements we didn’t
chose as step 1 are still minimal, and once we have removed shirt, tie becomes
minimal as well. We pick another minimal element, continuing in this way until all
elements have been picked. The sequence of elements in the order they were picked
will be a topological sort. This is how the topological sorts above were constructed.

So our construction shows:

“mcs” — 2018/6/6 — 13:43 — page 435 — #443

10.5. Directed Acyclic Graphs & Scheduling 435

Theorem 10.5.4. Every finite DAG has a topological sort.

There are many other ways of constructing topological sorts. For example, in-
stead of starting from the minimal elements at the beginning of paths, we could
build a topological sort starting from maximal elements at the end of paths. In fact,
we could build a topological sort by picking vertices arbitrarily from a finite DAG
and simply inserting them into the list wherever they will fit.5

10.5.2 Parallel Task Scheduling

For task dependencies, topological sorting provides a way to execute tasks one after
another while respecting those dependencies. But what if we have the ability to
execute more than one task at the same time? For example, say tasks are programs,
the DAG indicates data dependence, and we have a parallel machine with lots of
processors instead of a sequential machine with only one. How should we schedule
the tasks? Our goal should be to minimize the total time to complete all the tasks.
For simplicity, let’s say all the tasks take the same amount of time and all the
processors are identical.

So given a finite set of tasks, how long does it take to do them all in an optimal
parallel schedule? We can use walk relations on acyclic graphs to analyze this
problem.

In the first unit of time, we should do all minimal items, so we would put on our
left sock, our right sock, our underwear, and our shirt.6 In the second unit of time,
we should put on our pants and our tie. Note that we cannot put on our left or right
shoe yet, since we have not yet put on our pants. In the third unit of time, we should
put on our left shoe, our right shoe, and our belt. Finally, in the last unit of time,
we can put on our jacket. This schedule is illustrated in Figure 10.9.

The total time to do these tasks is 4 units. We cannot do better than 4 units of
time because there is a sequence of 4 tasks that must each be done before the next.
We have to put on a shirt before pants, pants before a belt, and a belt before a jacket.
Such a sequence of items is known as a chain.

Definition 10.5.5. Two vertices in a DAG are comparable when one of them is
reachable from the other. A chain in a DAG is a set of vertices such that any two of
them are comparable. A vertex in a chain that is reachable from all other vertices
in the chain is called a maximum element of the chain. A finite chain is said to end
at its maximum element.

5Topolgical sorts can be generalized and shown to exist even for infinite DAGs, but you’ll be
relieved to know that we have no need to go into this.

6Yes, we know that you can’t actually put on both socks at once, but imagine you are being dressed
by a bunch of robot processors and you are in a big hurry. Still not working for you? Ok, forget about
the clothes and imagine they are programs with the precedence constraints shown in Figure 10.7.

“mcs” — 2018/6/6 — 13:43 — page 436 — #444

Chapter 10 Directed graphs & Partial Orders436

underwear shirt

jacket

beltright shoeleft shoe

right sockleft sock

tiepants

A1

A2

A3

A4

Figure 10.9 A parallel schedule for the tasks-getting-dressed digraph in Fig-
ure 10.7. The tasks in Ai can be performed in step i for 1 � i � 4. A chain
of 4 tasks (the critical path in this example) is shown with bold edges.

“mcs” — 2018/6/6 — 13:43 — page 437 — #445

10.5. Directed Acyclic Graphs & Scheduling 437

The time it takes to schedule tasks, even with an unlimited number of processors,
is at least as large as the number of vertices in any chain. That’s because if we used
less time than the size of some chain, then two items from the chain would have to
be done at the same step, contradicting the precedence constraints. For this reason,
a largest chain is also known as a critical path. For example, Figure 10.9 shows
the critical path for the getting-dressed digraph.

In this example, we were able to schedule all the tasks with t steps, where t is
the size of the largest chain. A nice feature of DAGs is that this is always possible!
In other words, for any DAG, there is a legal parallel schedule that runs in t total
steps.

In general, a schedule for performing tasks specifies which tasks to do at succes-
sive steps. Every task a has to be scheduled at some step, and all the tasks that have
to be completed before task a must be scheduled for an earlier step.

Let’s be precise about the definition of schedule.

Definition 10.5.6. A partition of a set A is a set of nonempty subsets of A called
the blocks7 of the partition, such that every element of A is in exactly one block.

For example, one possible partition of the set fa; b; c; d; eg into three blocks is

fa; cg fb; eg fdg:

Definition 10.5.7. A parallel schedule for a DAG D is a partition of V.D/ into
blocks A0; A1; : : : ; such that when j < k, no vertex in Aj is reachable from any
vertex inAk . The blockAk is called the set of elements scheduled at step k, and the
time of the schedule is the number of blocks. The maximum number of elements
scheduled at any step is called the number of processors required by the schedule.

A largest chain ending at an element a is called a critical path to a, and the
number of elements less than a in the chain is called the depth of a. So in any
possible parallel schedule, there must be at least depth .a/ steps before task a can
be started. In particular, the minimal elements are precisely the elements with depth
0.

There is a very simple schedule that completes every task in its minimum num-
ber of steps: just use a “greedy” strategy of performing tasks as soon as possible.
Schedule all the elements of depth k at step k. That’s how we found the above
schedule for getting dressed.

Theorem 10.5.8. A minimum time schedule for a finite DAG D consists of the sets
A0; A1; : : : ; where

Ak WWD fa 2 V.D/ j depth .a/ D kg:
7We think it would be nicer to call them the parts of the partition, but “blocks” is the standard

terminology.

“mcs” — 2018/6/6 — 13:43 — page 438 — #446

Chapter 10 Directed graphs & Partial Orders438

We’ll leave to Problem 10.25 the proof that the sets Ak are a parallel schedule
according to Definition 10.5.7. We can summarize the story above in this way: with
an unlimited number of processors, the parallel time to complete all tasks is simply
the size of a critical path:

Corollary 10.5.9. Parallel time = size of critical path.

Things get more complex when the number of processors is bounded; see Prob-
lem 10.26 for an example.

10.5.3 Dilworth’s Lemma

Definition 10.5.10. An antichain in a DAG is a set of vertices such that no two ele-
ments in the set are comparable—no walk exists between any two different vertices
in the set.

Our conclusions about scheduling also tell us something about antichains.

Corollary 10.5.11. In a DAG D if the size of the largest chain is t , then V.D/ can
be partitioned into t antichains.

Proof. Let the antichains be the sets Ak WWD fa 2 V.D/ j depth .a/ D kg. It is an
easy exercise to verify that each Ak is an antichain (Problem 10.25). �

Corollary 10.5.11 implies8 a famous result about acyclic digraphs:

Lemma 10.5.12 (Dilworth). For all t > 0, every DAG with n vertices must have
either a chain of size greater than t or an antichain of size at least n=t .

Proof. Assume that there is no chain of size greater than t . Let ` be the size of
the largest antichain. If we make a parallel schedule according to the proof of
Corollary 10.5.11, we create a number of antichains equal to the size of the largest
chain, which is less than or equal t . Each element belongs to exactly one antichain,
none of which are larger than `. So the total number of elements is at most ` times
t—that is, `t � n. Simple division implies that ` � n=t . �

Corollary 10.5.13. Every DAG with n vertices has a chain of size greater than
p
n

or an antichain of size at least
p
n.

Proof. Set t D
p
n in Lemma 10.5.12. �

Example 10.5.14. When the man in our example is getting dressed, n D 10.
Try t D 3. There is a chain of size 4.
Try t D 4. There is no chain of size 5, but there is an antichain of size 4 � 10=4.
8Lemma 10.5.12 also follows from a more general result known as Dilworth’s Theorem, which

we will not discuss.

