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LECTURE 1

Interative Proofs

The notion of a proof is entral to mathematis and omputer siene, and

hene has been the subjet of muh investigation in both �elds. Indeed, from

previous letures in this volume, the reader should already be aware of the intimate

onnetion between traditional mathematial proofs and the fundamental questions

of omplexity theory (e.g., P

?

= NP and NP

?

= o-NP). In this leture series

(and the subsequent one by Madhu Sudan), we will examine several nontraditional

notions of proof whih have been at the enter of some very exiting developments

in omplexity theory.

Reall that proofs are given their meaning by speifying a proedure for verify-

ing them. To formalize this, both assertions and proofs are written as strings over

some �nite alphabet, and a language L is used to identify the strings representing

\true assertions." A lassial proof system for L is given by a veri�ation algorithm

V with the following two properties:

1. (Completeness) True assertions have proofs. That is, if x 2 L, then there

exists proof suh that V (x; proof ) = aept.

2. (Soundness) False assertions have no proofs. That is, if x =2 L, then for all

proof

�

, V (x; proof

�

) = rejet.

3. (EÆieny) V (x; proof ) runs in time poly(jxj).

Clearly, ompleteness and soundness are entral to our intuitive notion of proof.

Some form of eÆieny is also important, for if one ould deide whether the as-

sertion is true in less time than it takes to verify the proof, then the proof loses its
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usefulness. Reall that NP is the lass of languages having lassial proof systems

as de�ned above.

In these letures, we will onsider augmenting the above notion with two new

ingredients (as proposed in [GMR89, BM88℄). The �rst is randomization; that is,

we will allow the veri�ation proedure to toss oins and aept or rejet inorretly

with some small probability. While this is a substantial deviation from the las-

sial viewpoint whereby proofs establish the truth of an assertion with ertainty,

it is natural given the wide aeptane of randomized omputations as reasonable

substitutes for deterministi ones. The seond new ingredient is interation. Clas-

sially, proofs are viewed as stati objets that are written and �xed, before being

examined in their entirety by the veri�ation proedure. Instead, we will allow the

veri�er to interat with a dynami, all-powerful \prover" who will try to onvine

the veri�er of the validity of the assertion at hand.

Sine the lassial notion of proof seems to be adequate, the reader may won-

der what we gain by augmenting proof systems in these ways. Most diretly, we

obtain a more general notion of \eÆiently veri�able proofs" whih, in addition

to having possible philosophial value, provides eÆient proofs for more assertions

than lassial proofs do (as we shall see in Setion 1.3). The new notions are also

very useful for statements that do possess lassial proofs. For example, they an

yield dramati eÆieny savings in veri�ation (as we will see in the PCP Theorem

presented in Madhu Sudan's letures). The new notions also enable us to to de�ne

and ahieve properties that are meaningless (or trivial) for lassial proofs. For

example, in Leture 2 we will onstrut zero-knowledge proofs, whih are proofs

that reveal nothing other than the validity of the assertion being proven! We also

obtain new insight into lassial proofs and omplexity lasses by haraterizing

them in terms of the new types of proof systems. Finally, the new types of proof

systems have appliations to other topis in omputer siene: the probabilistially

hekable proofs of Madhu Sudan's letures yield insight into the approximability

of optimization problems (f., the letures of Sanjeev Arora in this volume) and

the zero-knowledge proofs of Leture 2 have wide appliability in ryptographi

protools (indeed, this was one of the main motivations of [GMR89℄).

1.1. De�nitions

Basi Notation: Let A be a probabilisti algorithm. A(x; r) denotes the output

of A when fed input x and oin tosses r. A(x) denotes the distribution of A(x; r)

when r is hosen uniformly at random. We say that A runs in time t(n) if for all x

of length n, A(x; r) halts within t(n) steps with probability 1 over the hoie of r.

As suggested above, we will obtain a new type of proof system by replaing las-

sial (NP) proofs with a \prover" that \interats" with a probabilisti \veri�er".

In order to make this preise, we must �rst formalize the notion of an interative

protool between two parties A and B. We do this by viewing eah party as a

funtion, taking the history of the protool (all the messages previously exhanged)

and the party's random oins, to the party's next message. Either party an deide

to halt the interation (possibly aepting or rejeting), at whih point the other

party is given an opportunity to ompute one more message.

De�nition 1.1 (interative protools). An interative protool (A;B) is any pair

of funtions from strings to strings. The interation between A and B on ommon

input x is the following random proess (denoted (A;B)(x)):
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1. Uniformly hoose random oin tosses r

A

and r

B

for A and B, respetively.

2. Repeat the following for i = 1; 2; : : : :

(a) If i is odd, let m

i

= A(x;m

1

; : : : ;m

i�1

; r

A

).

(b) If i is even, let m

i

= B(x;m

1

; : : : ;m

i�1

; r

B

).

() If m

i�1

2 faept; rejet; haltg, then exit loop.

If the last message omputed by A is aept (resp., rejet), we say that A

aepts (resp., rejets), and similarly for B. We all suh a protool polynomially

bounded if there is a polynomial p(�) suh that, on ommon input x, at most p(jxj)

messages are exhanged, and eah is of length at most p(jxj) (with probability 1 over

the hoie of r

A

and r

B

).

Originally, interative protools were de�ned in terms \interative Turing ma-

hines," but that approah is too tied to a partiular model of omputation for our

tastes.

Now interative proofs an be de�ned as a type of interative protool between

a prover (with no omputational limitations) and a polynomial-time veri�er. The

ompleteness and soundness onditions of lassial proofs are replaed with proba-

bilisti ones whih guarantee that the veri�er gains statistial on�dene that the

assertion being proven is true.

De�nition 1.2 (interative proofs | IP [GMR89, BM88℄). An interative pro-

tool (P; V ) is said to be an interative proof system for a language L if the following

onditions hold:

1. (EÆieny) (P; V ) is polynomially bounded and V is polynomial-time om-

putable.

2. (Completeness) If x 2 L, then V aepts with probability at least 2=3 in

(P; V )(x).

3. (Soundness) If x =2 L, then for any P

�

, V aepts with probability at most

1=3 in (P

�

; V )(x).

IP is lass of languages possessing interative proofs.

We now make some basi observations about the above de�nition.

� The aeptane probabilities of 2=3 and 1=3 allowed in the above de�nition

are arbitrary, and an be replaed with any pair of onstants 1 > � >

� > 0. Indeed, the error probability of any suh proof system an be made

exponentially small by taking polynomially many repetitions and having the

veri�er aept aording to majority/threshold rule.

� Interative proofs do indeed generalize lassial proofs, beause the prover

an simply send the veri�er a lassial proof, whih the veri�er then heks.

Thus, NP � IP. The main question we will address in this leture is

whether IP is stritly bigger than NP, and by how muh. It is left as an

exerise to prove the upper bound IP � PSPACE.

� The veri�er's randomness is essential in interative proofs: IP with deter-

ministi veri�ers ollapses to NP (exerise). On the other hand, restriting

to a deterministi prover auses no loss of generality (exerise).

1.2. Graph Nonisomorphism

Our �rst hint that interative proofs are stritly more powerful than lassial ones

will ome from an elegant proof system for Graph Nonisomorphism.
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De�nition 1.3. If G = ([n℄; E) is an undireted graph

1

and � is a permutation on

[n℄, then �(G) denotes the graph obtained by permuting the verties of G aording

to �. That is, �(G) = ([n℄; E

0

), where E

0

= f(�(u); �(v)) : (u; v) 2 Eg. If G and

H are graphs on n verties, and there exists a � suh that �(G) = H, we say that

G and H are isomorphi and write G

�

=

H. � is alled an isomorphism between

G and H, and H is said to be an isomorphi opy of G. Graph Isomorphism

is the language GI = f(G;H) : G

�

=

Hg: Graph Nonisomorphism (GNI) is the

omplement of GI.

It is easy to see that Graph Isomorphism is in NP: an easily veri�able proof

that two graphs are isomorphi is an isomorphism between them. In ontrast, no

lassial proofs are known for Graph Nonisomorphism. Nevertheless, as we shall

see, Graph Nonisomorphism does possess a very eÆient interative proof:

2

Theorem 1.4 ([GMW91℄). Graph Nonisomorphism is in IP.

The interative proof is based on two observations. First, if two graphs are

nonisomorphi, then their sets of isomorphi opies are disjoint. Seond, if two

graphs are isomorphi, then a random isomorphi opy of one graph is indistin-

guishable from a random isomorphi opy of the other. Thus, the interative proof,

given in Protool 1.5, tests whether the prover an distinguish between random

isomorphi opies of the two graphs.

Protool 1.5: Interative proof (P; V ) for Graph

Nonisomorphism

Input: Graphs G

0

= ([n℄; E

0

) and G

1

= ([n℄; E

1

)

1. V : Uniformly selet b 2 f0; 1g. Uniformly selet a permutation

� on [n℄. Let H = �(G

b

). Send H to P .

2. P : If G

0

�

=

H , let  = 0. Else let  = 1. Send  to V .

3. V : If  = b, aept. Otherwise, rejet.

We now verify that this protool meets the de�nition of an interative proof.

Proof of Theorem 1.4 (sketh). If G

0

and G

1

are nonisomorphi, then G

0

�

=

H

if and only if b = 0. So the prover strategy spei�ed above will make the veri�er

aept with probability 1. Thus, ompleteness is satis�ed.

On the other hand, if G

0

and G

1

are isomorphi, then H has the same dis-

tribution when b = 0 as it does when b = 1 (exerise). Thus, b is independent of

H and the prover has at most probability at most 1=2 of guessing b orretly no

matter what strategy it follows. This shows that the protool is sound.

A few remarks about the proof system are in order. The �rst is it ahieves an

aeptane probability of 1 in the ompleteness ondition; this attrative property

is often referred to as perfet ompleteness. Seond, the proof system is very om-

muniation eÆient: only two messages are exhanged and the prover sends only

1

To avoid notational onfusion with the veri�er strategy V , all of our graphs will have vertex set

[n℄

def

= f1; : : : ; ng for some n 2 N.

2

There has been some reent evidene that Graph Nonisomorphism is inNP, in fat based on the

existene of an eÆient interative proof for Graph Nonisomorphism [AK97, KvM99, MV99℄.
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one bit to the veri�er (more generally, k bits to ahieve soundness probability 1=2

k

).

Finally, note that it is ruial for soundness that the veri�er's random oin ips are

kept \private." If the bit b is made publi and revealed to the prover, soundness

will no longer hold. Surprisingly, every private-oin interative proof (like the one

above) an be transformed into a publi-oin one; that is, one in whih the veri�er's

oin ips are ompletely visible to the prover [GS89℄.

1.3. o-NP and more

In the previous setion, we saw an interative proof for a problem not known to

have eÆient lassial proofs, giving the �rst evidene that IP is stritly larger than

NP. In this setion, we shall obtain muh stronger evidene:

Theorem 1.6 ([LFKN92℄). o-NP � IP.

It is widely believed that NP 6= o-NP (f., the letures of Paul Beame in this

volume), so this strongly suggests that interative proofs are more powerful than

lassial ones.

1.3.1. A First Attempt

By the NP-ompleteness of Satisfiability, proving that o-NP � IP is equiv-

alent to giving an interative proof for Unsatisfiability. So let us onsider how

one may try to prove that a formula ' is unsatis�able. Atually, it will be useful to

onsider how to prove that a formula ' has exatly k satisfying assignments for any

k. That is, we want to give an interative proof for Exat #SAT, the language

E#SAT

def

= f('; k) : ' has exatly k satisfying assignmentsg

Observation. A formula '(x

1

; : : : ; x

n

) has exatly k satisfying assignments i�

there exist k

0

, k

1

suh that

1. k

0

+ k

1

= k,

2. '

0

(x

2

; : : : ; x

n

)

def

= '(0; x

2

; : : : ; x

n

) has exatly k

0

satisfying assignments, and

3. '

1

(x

2

; : : : ; x

n

)

def

= '(1; x

2

; : : : ; x

n

) has exatly k

1

satisfying assignments.

This observation suggests a �rst idea for proving that ' has exatly k satisfying

assignments: First, the prover sends the veri�er k

0

and k

1

. Seond, the veri�er

heks that k

0

+ k

1

= k, and randomly selets a value b 2 f0; 1g for the �rst

variable. Then the prover reursively proves to the veri�er (using the same protool)

that '

b

has exatly k

b

satisfying assignments. (At the bottom of the reursion

when the formula has no variables, the veri�er simply heks that evaluates to

0 or 1 aording to whether the prover has laimed that it has 0 or 1 satisfying

assignments, respetively.)

When ' has exatly k satisfying assignments, the veri�er will aept with prob-

ability 1 in this protool. Conversely, when ' does not have exatly k satisfying

assignments, one of the onditions in the observation must fail to hold, so there is a

nonzero probability that the prover will ontinue to have a false statement to prove

(unless k

0

+ k

1

6= k, in whih ase the veri�er will rejet immediately). Continuing

this argument indutively, we onlude that the veri�er has a nonzero probability

of rejeting overall. However, it is not an interative proof beause, in the sound-

ness ase, the veri�er may aept with probability 1�2

�n

, whih is not suÆiently

bounded away from 1. This is beause, for eah variable of the formula, the veri�er
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may have only probability 1=2 of setting the variable in a way that leaves the prover

with something false to prove.

1.3.2. Arithmetization

Intuitively, the problem desribed above omes from the fat that every variable of

the formula has only two possible values and we an only guarantee that at least

one of these values will reet the falsity of the assertion that the prover is trying

to prove. An idea for solving this is to allow the variables to take values in a larger

set F (� f0; 1g), and extend the formula ' : f0; 1g ! f0; 1g to a more \robust"

funtion ~' : F

n

! F so that \most" evaluation points will reet inonsistenies.

We will do this extension via powerful tehnique known as arithmetization. We

will take F to be a suÆiently large �nite �eld and show how to extend ' to a

(multivariate) low-degree polynomial over F. The robustness properties we desire

will be based on the fat that two distint low-degree polynomials annot agree in

many plaes.

We reursively de�ne a mapping ' 7! ~' from Boolean formulas in variables

x

1

; : : : ; x

n

to polynomials over F in variables x

1

; : : : ; x

n

:

~x

i

= x

i

f:' = 1� ~'

^

' ^  = ~' �

~

 

(Without loss of generality, we restrit our attention to formulas over the omplete

basis : and ^.)

The following are easily veri�ed by indution:

1. ~'j

f0;1g

n

= '.

2. The (total) degree of the polynomial ~' is at most d = j'j.

Proving that ' has exatly k satisfying assignments is equivalent to proving

k =

X

x

1

2f0;1g

X

x

2

2f0;1g

� � �

X

x

n

2f0;1g

~'(x

1

; : : : ; x

n

)(1.7)

(provided that the harateristi of F is greater than 2

n

, whih an be guaranteed

by hoosing F = Z=qZ for a prime q > 2

n

). The protool for proving Equation (1.7)

will proeed analogously to the �rst attempt above, generalized to this setting where

the variables an take values in F. The prover will send the veri�er the values

k

�

def

=

X

x

2

2f0;1g

� � �

X

x

n

2f0;1g

~'(�; x

2

; : : : ; x

n

)(1.8)

for every � 2 F (rather than just k

0

and k

1

as before). As before, the veri�er will

hek that k

0

+k

1

= k, and then hoose a random � 2 F on whih the prover should

reursively prove that Equation (1.8) holds. The key observation whih makes this

work is that the k

�

's an all be spei�ed by a degree d polynomial p satisfying

p(�) = k

�

8� (beause ~' is of degree d). This helps in two ways. First, it allows

all the values fk

�

g to be spei�ed suintly by the prover by giving the d + 1

oeÆients of p. (The entire list given expliitly would be of size jFj > 2

n

, whih is

too large). Seond, it guarantees that if the prover sends a wrong value for a single

k

�

, then the prover must send a wrong value for most k

�

's.
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1.3.3. The Proof System

Formalizing the above ideas, we obtain Protool 1.9.

Protool 1.9: Interative Proof for E#SAT

Input: A formula '(x

1

; : : : ; x

n

) and an integer k

1. P; V : Let d = j'j, and let F be a �nite �eld of harateristi

greater than 2

d

(� 2

n

), and let ~'(x

1

; : : : ; x

n

) be the arithmeti-

zation of ' (over F).

2. P : Compute the degree d polynomial

p

1

(x)

def

=

X

x

2

2f0;1g

� � �

X

x

n

2f0;1g

~'(x; x

2

; : : : ; x

n

);

and send p

1

to V .

3. V : Chek that p

1

(0)+p

1

(1) = k (and rejet immediately if not).

4. V : Choose �

1

uniformly from F and send �

1

to P .

5. P; V : From i = 2 to n, do the following:

(a) P : Compute the degree d polynomial

p

i

(x)

def

=

X

x

i+1

2f0;1g

� � �

X

x

n

2f0;1g

~'(�

1

; : : : ; �

i�1

; x; x

i+1

; : : : ; x

n

);

and send p

i

to V .

(b) V : Chek that p

i

(0) + p

i

(1) = p

i�1

(�

i�1

) (and rejet im-

mediately if not).

() V : Choose �

i

uniformly from F and send �

i

to P .

6. V : Aept if p

n

(�

n

) = ~'(�

1

; : : : ; �

n

).

Proposition 1.10. Protool 1.9 is an interative proof system for Exat #SAT.

Proof. EÆieny an be veri�ed by inspetion. Also by inspetion, we see that

if ' has exatly k satisfying assignments and the prover omputes all the p

i

's

aording to the spei�ed protool, then all the veri�er's heks will pass. That

is, p

1

(0) + p

1

(1) = k, p

i

(0) + p

i

(1) = p

i�1

(�

i�1

) for all i > 1, and p

n

(�

n

) =

~'(�

1

; : : : ; �

n

).

Thus, we need only prove soundness. We will argue that if ' does not have k

satisfying assignments, then, no matter what strategy P

�

the prover follows, the

veri�er will aept with probability at most nd=jFj < d

2

=2

d

< 1=3 (for suÆiently

large d = j'j).

Let p

1

(x); : : : ; p

n

(x) denote the polynomials omputed orretly (as presribed

by Protool 1.9), and let p

�

1

(x); : : : ; p

�

n

(x) denote the polynomials sent by P

�

. Note

that p

1

(0) + p

1

(1) is exatly the number of satisfying assignments of '. Thus, if '

does not have exatly k satisfying assignments, then no matter what p

�

1

the prover

sends, either (a) p

�

1

(0) + p

�

1

(1) 6= k, or (b) p

�

1

6= p

1

. If (a) holds, then the veri�er

will rejet immediately. If (b) holds, then with high probability (� 1 � d=jF j)

p

�

1

(�

1

) 6= p

1

(�

1

) (beause p

�

1

and p

1

are distint degree d polynomials, and hene

agree on at most d points). Thus, after the �rst variable is set, the prover will be

left with a false assertion to prove with high probability (rather than probability

1=2), as desired.
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Later rounds are analyzed in a similar fashion. Assume that

p

�

i�1

(�

i�1

) 6= p

i�1

(�

i�1

) = p

i

(0) + p

i

(1):

Then no matter what p

�

i

the prover sends, it must be the ase that either (a)

p

�

i

(0) + p

�

i

(1) 6= p

�

i�1

(�

i�1

), or (b) p

�

i

6= p

i

. As before, if (a) holds the veri�er will

rejet immediately, and if (b) holds, then p

�

i

(�

i

) 6= p

i

(�

i

) with probability at least

1� d=jFj.

By a union bound, it follows that, with probability at least 1 � nd=jFj, the

veri�er rejets or p

�

n

(�

n

) 6= p

n

(�

n

) = ~'(�

1

; : : : ; �

n

). Sine the veri�er will also

rejet in the latter ase, soundness is established.

1.3.4. A Full Charaterization

o-NP � IP (Thm. 1.6) follows from Proposition 1.10 beause Unsatisfiability

redues to Exat #SAT via the map ' 7! ('; 0). In fat, it even follows that

P

#P

� IP. With some additional ideas, we obtain a omplete haraterization of

the power of interative proofs.

Theorem 1.11 ([Sha92℄). IP = PSPACE

Proof sketh. Reall that a omplete problem forPSPACE isQuantified Bool-

ean Formulae (QBF), i.e., the language of true assertions of the form

8x

1

9x

2

8x

3

� � � 9x

n

'(x

1

; : : : ; x

n

);

where ' is a Boolean formula. Let's attempt to diretly extend the ideas of Pro-

tool 1.9 to this problem. That is, extend the arithmetization to formulas with

quanti�ers, and onstrut a protool whih eliminates one variable/quanti�er at a

time (with the veri�er hoosing random values in some �eld). Let '(x

1

; : : : ; x

i

) be

a partially quanti�ed formula with free (i.e., unquanti�ed) variables x

1

; : : : ; x

i

(and

\bound" variables x

i+1

; : : : ; x

n

). We de�ne its arithmetization ~'(x

1

; : : : ; x

i

) as fol-

lows. If ' has no quanti�ers (i.e., i = n), then ~' is de�ned just as in Setion 1.3.2.

If ' = 8x

i+1

 (x

1

; : : : ; x

i+1

) then

~'(x

1

; : : : ; x

i

) =

~

 (x

1

; : : : ; x

i

; 0) �

~

 (x

1

; : : : ; x

i

; 1)(1.12)

If ' = 9x

i+1

 (x

1

; : : : ; x

i+1

) then

~'(x

1

; : : : ; x

i

) = 1�

�

1�

~

 (x

1

; : : : ; x

i

; 0)

�

�

�

1�

~

 (x

1

; : : : ; x

i

; 1)

�

(1.13)

This arithmetization maintains the property that the arithmetized formulas agree

with original formulas whenever the free variables are assigned values from f0; 1g. In

partiular, proving that a fully quanti�ed Boolean formula is in QBF is equivalent

to proving that its arithmetization is the onstant polynomial 1.

The problem with this new arithmetization is that the degrees blow up, squaring

with every quanti�er. The result is the polynomials the prover would have to send

in a protool like Protool 1.9 would be of exponentially large degree, and the proof

system will fail to satisfy the eÆieny requirement. The solution is to introdue

operations that redue the degree but have no e�et on boolean values. Suppose

f(x

1

; : : : ; x

i

) is a polynomial and, for some j 2 f1 : : : ; ig, onsider the polynomial

f

0

(x

1

; : : : ; x

i

) = x

j

� f(x

1

; : : : ; x

j�1

; 1; x

j+1

; : : : ; x

n

) +(1.14)

(1� x

j

) � f(x

1

; : : : ; x

j�1

; 0; x

j+1

; : : : ; x

n

):
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f

0

is idential to f when its variables take on boolean values, yet the degree of x

j

is

redued to 1 in f

0

. Interleaving this operation periodially for every unquanti�ed

variable prevents the degree blow-up enountered above, and allows a onstrution

of proof system like Protool 1.9 for QBF. (The protool has a \round" for eah

quanti�er and eah appliation of the degree-redution operation, and the onsis-

teny heks p

i

(0)+p

i

(1) = p

i�1

(�

i�1

) are replaed with ones to hek onsisteny

with Equations (1.12), (1.13), and (1.14).)

1.4. Additional Topis

1.4.1. Message Complexity

A striking ontrast between the interative proofs for Graph Nonisomorphism

(Protool 1.5) and o-NP/PSPACE (Protool 1.9) is that the latter requires muh

more interation, as measured in the following way:

De�nition 1.15 (message omplexity

3

). An interative protool (A;B) has mes-

sage omplexity m(n) if on every input x and every hoie of the random oins for

A and B, the number of messages omputed before the �rst aept/rejet/halt

message is at most m(jxj).

The lass of languages possessing interative proofs with onstant message om-

plexity is denoted AM.

4

It is natural to ask whether more interation inreases the expressive power of

interative proofs. That is, are there languages whih have interative proofs of

message omplexity m(n) but not m

0

(n) for some funtions m

0

;m? The following

result shows that inreasing the number of messages by a onstant fator does not

yield more power:

Theorem 1.16 ([BM88℄). For any onstant  2 N and any funtion m(�) � 2,

the following holds: If L has an interative proof with message omplexity m(�),

then L has an interative proof with message omplexity m(�).

On the other hand, it is known that interative proofs with onstant message

omplexity an only prove languages that are low in the polynomial-time hierarhy

(spei�ally, AM � �

2

) [BM88℄, we have seen that all of PSPACE is provable

with no restrition on the number of messages (Thm. 1.11). Hene, polynomially

many rounds of interation annot be redued to a onstant unless PSPACE = �

2

.

In fat, it is unlikely that suh an improvement is possible even for o-NP:

Theorem 1.17 ([BHZ87℄). If o-NP � AM, then the polynomial-time hierarhy

ollapses (spei�ally, PH = �

2

).

Reall that it is widely believed that the polynomial-time hierarhy does not

ollapse (f., the letures of Steven Rudih in this volume). Sine Graph Noniso-

morphism is in AM (Protool 1.5 onsists of two rounds), we obtain the following

interesting onsequene:

Corollary 1.18. Graph Isomorphism is notNP-omplete unless the polynomial-

time hierarhy ollapses.

4

The notation AM omes from Arthur{Merlin games, whih was the name given to the type

of interative proofs introdued in [BM88℄. Arthur{Merlin games are the same as publi-oin

interative proofs, whih we disuss in Setion 1.4.2.
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Figure 1. Relation of IP and AM to other omplexity lasses. Lines indiate

left-to-right inlusion.

Proof. If Graph Isomorphism were NP-omplete, the Graph Nonisomor-

phism would be o-NP-omplete and we would have o-NP � AM.

The above proof refers to NP-ompleteness via standard Karp redutions (also

known as \many-one" or \mapping" redutions), but it an be easily extended

to more general forms of reduibility suh as Cook redutions [Sh88℄ (see also

[GG00℄).

1.4.2. Private Coins vs. Publi Coins

Reall that it was essential in the proof system for Graph Nonisomorphism

(Protool 1.5) that the veri�er's oin tosses are \private," meaning that they are not

visible to the prover. In striking ontrast, the veri�er needs no hidden randomness

in the proof systems for o-NP (Protool 1.9) and PSPACE. That is, those proof

systems satisfy the following de�nition:

De�nition 1.19 (publi-oin proofs [BM88℄). An interative proof system is

publi oin if eah of the veri�er's messages onsists of random oin tosses, uniform

and independent of the previous messages (exept for the last aept=rejet=halt

message).

Sine PSPACE has a publi-oin proof system and IP = PSPACE, it follows

that publi-oin interative proofs are as powerful as private-oin ones. However,

there is a stronger (and older) equivalene between private oins and publi oins

that also preserves message omplexity:

Theorem 1.20 ([GS89℄). If a language has an interative proof with message

omplexity m(n), then it has a publi-oin interative proof with message omplexity

m(n).

This theorem is very useful in proving results about interative proofs, sine

the strutured behavior of the veri�er in publi-oin proofs makes them muh easier

to analyze and manipulate. Indeed, the proofs of Theorems 1.16 and 1.17 begin by

using Theorem 1.20 to redue to the publi-oin ase.

Applying Theorem 1.20 to the proof system for Graph Nonisomorphism

(Protool 1.5), we obtain the following onsequene:

Corollary 1.21. Graph Nonisomorphism has a 2-message publi-oin intera-

tive proof system.

One of the exerises involves onstruting a 2-message publi-oin interative

proof for a problem related to Graph Nonisomorphism (using the same tools

that underlie the proof of Theorem 1.20).
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1.4.3. The Power of the Prover

Even though the de�nition of interative proofs plaes no omputational restritions

on the prover strategy, it is interesting to investigate what power the prover atually

needs. If (P; V ) is an interative for a language L, then the omplexity of the prover

strategy P must, in some sense, be at least the omplexity of the language L itself,

beause one an deide membership in L by simulating the interation between P

and V . The following de�nition identi�es those proof systems for whih this lower

bound on the prover's omplexity is tight.

De�nition 1.22 ([BG94℄). An interative proof system (P; V ) for a language L

is ompetitive if the prover strategy P an be omputed in probabilisti polynomial

time given a membership orale for L.

Whih problems have ompetitive interative proofs? Satisfiability (and

hene every NP-omplete problem) has a ompetitive interative proof, by the

well-known fat that using an orale for deiding SAT, one an atually �nd sat-

isfying assignments in polynomial time. The Graph Nonisomorphism proof sys-

tem (Protool 1.5) is also ompetitive, as the prover strategy amounts to deiding

Graph Isomorphism. With a little more work, it an be veri�ed that the prover

in Protool 1.9 an be implemented using a #P-orale, and hene #P-omplete

problems have ompetitive interative proofs. Finally, it follows from one of the ex-

erises that PSPACE-omplete problems also have ompetitive interative proofs.

However, it is unlikely that all problems in IP have ompetitive interative proofs:

Theorem 1.23 ([BG94℄). If nondeterministi double-exponential time is not on-

tained in probabilisti double-exponential time, then there is a problem in NP whih

has no ompetitive interative proof.

There are a ouple of intriguing open problems involving ompetitive interative

proofs.

Open Problem 1.24. Do o-NP-omplete problems have ompetitive interative

proofs?

The best upper bound known on the omplexity of a prover for o-NP is #P,

as in Protool 1.9.

Open Problem 1.25. Does Graph Nonisomorphism have a publi-oin om-

petitive interative proof? More generally, are there any problems for whih publi-

oin interative proofs require provers with greater omplexity than private-oin in-

terative proofs?

Reall that there is a transformation whih onverts private-oin interative

proofs to publi-oin ones (Theorem 1.20), but that transformation does not pre-

serve the prover's omplexity (and no \blak box" transformation an [Vad00℄).

1.5. Exerises

Exerise 1 (The veri�er's randomness is essential). Show that the lass of lan-

guages possessing interative proofs with a deterministi veri�er is simply NP.

Exerise 2 (The prover's randomness is inessential). Show that every language hav-

ing an interative proof has one with a deterministi prover.
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Exerise 3 (Upper-bounding the power of interation). Convine yourself that IP �

PSPACE. (Hint: What is the omplexity of omputing the deterministi prover

strategy you onstruted in Problem 2?)

Exerise 4 (Soundness of Graph Nonisomorphism interative pf). Show that if

G

0

= ([n℄; E

0

) and G

1

= ([n℄; E

1

) are isomorphi graphs, then �(G

0

) and �(G

1

)

are identially distributed when � is a uniformly hosen permutation of the vertex

set [n℄.

Exerise 5 (Publi-oin lower bound protool*). A family H of funtions map-

pingX to Y is alled pairwise independent if when we hoose h uniformly at random

from H, the following two onditions hold:

� For all x 2 X , h(x) is distributed uniformly in in Y .

� For all x

1

6= x

2

2 X , h(x

1

) and h(x

2

) are independent.

(EÆiently omputable pairwise independent families mapping f0; 1g

n

to f0; 1g

m

exist, e.g., the set of funtions of the form h

A;b

(x) = Ax + b where A is an m � n

0{1 matrix, b 2 f0; 1g

m

, and all arithmeti is modulo 2.)

1. Let H be a pairwise independent family of funtions mapping X to Y , let

S � X , and let y be any �xed element of Y . Show that

(a) If jSj � Æ � jY j, then Pr

h H

[9x 2 S s.t. h(x) = y℄ � Æ

(b) If jSj � (1=Æ) � jY j, then Pr

h H

[9x 2 S s.t. h(x) = y℄ � 1� Æ. (Hint:

Use Chebyhev's Inequality.)

2. An automorphism of a graph is an isomorphism with itself. A graph is rigid

if it has no automorphisms other than the identity. Use Part (1) to onstrut

a publi-oin interative proof for the language of rigid graphs. (Hint: Let

S be the set of 100-tuples of graphs that are isomorphi to the input graph.)

Solution Skethes

Solution 1. A transript of an interation in whih the veri�er aepts onstitutes

an NP proof. Note that the validity of suh a transript (i.e., onsisteny with the

veri�er's algorithm) an be heked in poly time.

Solution 2. An \optimal" prover omputes eah message to maximize the aep-

tane probability of the veri�er given the transript of the interation so far. This

strategy is deterministi.

Solution 3. We need to show that the maximum possible aeptane probability

p(t) of the veri�er given the transript t of the interation so far an be omputed

in PSPACE. This an be done reursively: If the next move is the prover's, then

p(t) = max

m

p(t Æm) (where we take the maximum over prover messages m). If

the next move is the veri�er's, then p(t) =

P

m

q

t;m

� p(t Æ m), where q

t;m

is the

probability that the veri�er's next message is m given that the transript so far is

t. Note that q

t;m

an be omputed by enumerating over all the veri�er's oin tosses

(and disarding those that are not onsistent with t.).

Solution 4. Let � be suh that �(G

0

) = G

1

. Then for every graph H , the map

� 7! � Æ � is a bijetion between the set of permutations taking G

1

to H and those

taking G

0

to H . ( �(G

1

) = H , �(�(G

0

)) = H .)

Solution 5.
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1. (a) This is just a union bound | eah x 2 S has probability 1=jY j of

mapping to y, so the probability that any of them maps to y is at

most jSj � (1=jY j) � Æ.

(b) This is an appliation of Chebyhev. De�ne indiators I

x

for the on-

dition h(x) = y. We are interested in the probability (over the hoie

of h) of the event that the sum M =

P

x2S

I

x

is greater than 0. Eah

I

x

has expetation 1=jY j, so

E

[M ℄ = jSj�(1=jY j). Eah I

x

has variane

(1 � 1=jY j) � (1=jY j) < 1=jY j. Sine they are pairwise independent,

Var[M ℄ � jSj � (1=jY j). Hene, by Chebyhev's Inequality,

Pr[M = 0℄ � Pr[jM �

E

[M ℄j �

E

[M ℄℄ �

Var[M ℄

E

[M ℄

2

�

jY j

jSj

� Æ:

2. The number of graphs isomorphi to G equals n! divided by the number of

automorphisms of G, inluding the identity. (The number of permutations

taking G to any H isomorphi to G is exatly the number of automorphisms

of G.) Hene, if G has no automorphisms other than the identity then there

are n! graphs isomorphi to G, and if G has at least 1 automorphism other

than the identity then there are at most n!=2 isomorphi to G. Taking

100-tuples ampli�es the gap to 2

100

, and we get the following proof system:

The Veri�er randomly hooses a hash funtion h mapping to f0; 1g

`

for

` � log

2

(n!=2

50

). The Prover is then supposed to return a 100-tuple of

graphs (G

1

; G

2

; : : : ; G

100

) isomorphi to G suh that h(G

1

; : : : ; G

100

) = 0

`

.

To prove that these 100 graphs are isomorphi to G, the prover also sends

the orresponding isomorphisms. Completeness and soundness follow from

the argument above and Part (1).





LECTURE 2

Zero-Knowledge Proofs

Given the importane of proofs in mathematis and omputer siene, it is

natural to ask \What does one learn from a proof?" By de�nition, upon verifying

a proof, one should be onvined that the assertion being proven is true. But a

proof an atually reveal muh more than that. Indeed, proofs in mathematis are

often valued for providing insight in addition to validating a partiular theorem.

And, at a minimum, it seems inherent in lassial proofs that after verifying a

proof, one leaves not just with on�dene that the assertion is true, but also with

the ability to present the same proof to others and onvine them of the assertion.

Interative proofs, however, are not bound by the same limitations as lassial

proofs. We will see below that it is possible for an interative proof to be zero

knowledge, with the veri�er learning nothing other than than the validity of the

assertion being proven. In partiular, after verifying suh a proof, one does gain

the ability to onvine someone else of the same statement!

2.1. De�nition

It is remarkable that the zero-knowledge property an even be de�ned in a mean-

ingful and realizable manner. This is aomplished by the simulation paradigm:

we say that veri�er has learned nothing from its interation with the prover if the

veri�er an \simulate" its view of the interation on its own. That is, there should

be an eÆient probabilisti algorithm, alled a simulator, whose output distribution

is indistinguishable from what the veri�er sees when interating with the prover.

Intuitively, this means that the veri�er learns nothing sine it an run the simulator

instead of interating with the prover.

De�nition 2.1 (view of an interative protool). Let (A;B) be an interative pro-

tool. B's view of (A;B) on ommon input x is the random variable hA;Bi(x) =

(m

1

; : : : ;m

t

; r) onsisting of all the messages m

1

; : : : ;m

t

exhanged between A and

B together with the string r of random bits that B has read during the interation.

1

De�nition 2.2 (zero-knowledge proofs [GMR89℄).

An interative proof system (P; V ) for a language L is said to be zero knowledge if

1

It may seem unnatural that our notation is asymmetri in that it does not allow for indiating

A's view of the protool. However, in these letures, we will only be interested in B's view (as B

orresponds to the veri�er in an interative proof), and thus we have opted for a simpler notation

at the expense of generality.

15
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for every probabilisti polynomial-time V

�

, there exists a probabilisti polynomial-

time simulator S suh that

fS(x)g

x2L

and fhP; V

�

i(x)g

x2L

are omputationally indistinguishable.

2

That is, for every (nonuniform) polynomial-

time algorithm D, there is a negligible

3

funtion � suh that for all x 2 L,

jPr [D(x; S(x)) = 1℄� Pr [D(x; hP; V

�

i(x)) = 1℄j � �(jxj):

Note that the simulation is only required to be aurate on inputs x 2 L;

that is, when the assertion being proven is true. We wanted the de�nition to

apture the fat that the veri�er should learn nothing from the \proof" (whih is

now atually the strategy for P ). For inputs x =2 L, there is no \orret" proof

(as guaranteed by soundness), so it would be somewhat strange to require that

the veri�er learns nothing in this ase. From a ryptographi point of view, this

asymmetry orresponds to the idea that we only wish to protet parties that are

behaving honestly; a prover that is trying to prove a false assertion is ertainly not.

Another important point about the above de�nition is that we require the

zero-knowledge property to hold even if the veri�er follows a strategy V

�

that

deviates from the spei�ed protool (provided it is still polynomial time). Clearly,

this feature is ruial in ryptographi appliations. (Though \honest-veri�er zero

knowledge," in whih a simulator is only required for the spei�ed veri�er strategy,

is already nontrivial and of omplexity-theoreti interest.)

2.2. Zero-knowledge Proofs for NP

De�nition 2.2 beautifully aptures the intuitive notion of \learning nothing," but

of ourse, the question remains whether nontrivial zero-knowledge proofs exist.

Remarkably, every problem having a lassial proof also has a zero-knowledge proof.

Theorem 2.3 ([GMW91℄). Every language in NP has a zero-knowledge proof

(assuming one-way funtions

4

exist).

With this theorem, zero-knowledge proofs gain vast appliability in ryptogra-

phy, where it often arises that one party wishes to onvine others of some \NP

assertion" without leaking unneessary information. For example, zero-knowledge

proofs an be used to make protools robust against heating parties: partiipants

in the protool an prove to eah other that their ations are onsistent with the

spei�ed protool without omprising any of their \seret" information (e.g., their

enryption keys) [Yao86, GMW87℄. They an also be used to onstrut \iden-

ti�ation shemes," whereby one party an \prove" her identity to others without

leaking any information that an later be used to impersonate her [FFS88℄.

To prove Theorem 2.3, it suÆes to give a zero-knowledge proof for a single

NP-omplete problem. We will use Graph 3-Coloring. A 3-oloring of a graph

G = ([n℄; E) is an assignment C : [n℄ ! fR;G;Bg (for \Red," \Green," and

2

See Oded Goldreih's leture notes in this volume for a detailed disussion of omputational

indistinguishability. The de�nition we need di�ers from the one there in two main respets: the

ensembles are indexed by strings in a language rather than all natural numbers, and we allow the

distinguisher to be nonuniform (i.e., a iruit).

3

A funtion � : N ! [0; 1℄ is negligible if for every (positive) polynomial p, �(n) � 1=p(n) for all

suÆiently large n.

4

See the leture notes of Goldreih in this volume for the de�nition of one-way funtions
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\Blue") suh that no pair of adjaent verties are assigned the same olor. Graph

3-Coloring is the language

3COL = fG : G is 3-olorableg ;

and it is known to be NP-omplete (f., [Pap94℄).

2.2.1. A \Physial" Protool

The zero-knowledge proof for Graph 3-Coloring is based on the observation

that the lassial proof an be broken into \piees" and randomized in suh a way

that (a) the entire proof is valid if and only if every piee is valid, yet (b) eah

piee reveals nothing on its own. For Graph 3-Coloring, the lassial proof is

a three-oloring of the graph, and the piees are the restrition of the oloring to

the individual edges: (a) An assigment of olors to verties of the graph is a proper

3-oloring if and only if the endpoints of every edge have distint olors, yet (b) if

the three olors are randomly permuted, then the olors assigned to the endpoints

of any partiular edge are merely a random pair of distint olors and hene reveal

nothing.

In Protool 2.4, we show how to use the above observations to obtain a zero-

knowledge proof for Graph 3-Coloring whih makes use of \physial" imple-

ments | namely opaque, lokable boxes. We will later obtain the �nal proof system

by using an appropriate \digital" (i.e., mathematial) primitive whih emulates the

properties of opaque boxes used.

Protool 2.4: \Physial" Proof System (P; V ) for Graph

3-Coloring

Input: A graph G = ([n℄; E)

1. P : Let C be any anonial 3-oloring of G (e.g., the lexiograph-

ially �rst one). Let � be a uniformly seleted permutation of

fR;G;Bg. Let C

0

= � Æ C.

2. P : For every vertex v 2 [n℄, plae C

0

(v) inside a box B

v

, lok

the box using a key K

v

, and send the box B

v

to V .

3. V : Uniformly selet an edge (x; y) 2 E and send (x; y) to P .

4. P : Send the keys K

x

and K

y

to V .

5. V : Unlok the boxes B

x

and B

y

, and aept if the olors inside

are di�erent.

We now explain why this protool works. The following \proof" should only be

taken as motivation for the �nal protool, and the reader should not be disturbed by

ambiguities resulting from the fat that we haven't preisely de�ned this \physial"

model.

\Proposition" 2.5. Protool 2.4 is a \zero-knowledge proof" for 3COL.

\Proof". For ompleteness, �rst observe that if C is a proper 3-oloring of G then

so is C

0

. Thus, no matter whih edge (x; y) 2 E the veri�er selets, the olors C

0

(x)

and C

0

(y) inside boxes B

x

and B

y

will be di�erent. Therefore, the veri�er aepts

with probability 1 when G 2 3COL.
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For soundness, onsider the olors inside the boxes sent by the prover in Step 2

as assigning a olor to eah vertex of G. If G is not 3-olorable, then it must be

the ase that for some (x; y) 2 E, B

x

and B

y

ontain the same olor. So the

veri�er will rejet with probability at least 1=jEj. By repeating the protool jEj+1

times, the probability that the veri�er aepts on G =2 3COL will be redued to

(1� 1=jEj)

jEj+1

< 1=3.

To argue that Protool 2.4 is \zero knowledge," let's onsider what a veri�er

\sees" in an exeution of the protool (when the graph is 3-olorable). The veri�er

sees n boxes fB

v

g, all of whih are loked and opaque, exept for a pair B

x

, B

y

orresponding to an edge in G. For that pair, the keys K

x

and K

y

are given and

the olors C

0

(x) and C

0

(y) are revealed. Of all this, only C

0

(x) and C

0

(y) an

potentially leak knowledge to the veri�er. However, sine the oloring is randomly

permuted by �, C

0

(x) and C

0

(y) are simply a (uniformly) random pair of distint

olors from fR;G;Bg, and learly this is something the veri�er an generate on its

own.

In this intuitive argument, we have reasoned as if the veri�er selets the edge

(x; y) in advane, or at least independently of the permutation �. This would

of ourse be true if the veri�er follows the spei�ed protool and selets the edge

randomly, but the de�nition of zero knowledge requires that we also onsider heat-

ing veri�er strategies whose edge seletion may depend on the messages previously

reeived from the prover (i.e., the olletion of boxes). However, the perfet opaque-

ness of the boxes guarantees that the veri�er has no information about their on-

tents, so we an indeed view (x; y) as being seleted in advane by the veri�er, prior

to reeiving any messages from the prover.

2.2.2. The \Digital" Protool

In order to obtain a \digital" (i.e., mathematial) zero-knowledge proof for Graph

3-Coloring, we will replae the opaque boxes with a ryptographi primitive that

retains the essential features of the boxes: We should be able \lok" objets (i.e.,

strings) into \boxes" (again, strings) in suh a way that:

1. The loked box ompletely hides the objet loked within it (to maintain

the zero-knowledge property).

2. A \key" to open a box and verify its ontents an be given (to implement

Step 4).

3. The ontents of a loked box annot be hanged (to maintain soundness).

The following de�nition aptures the above three properties.

De�nition 2.6 (ommitment shemes | simpli�ed)). A ommitment sheme is a

polynomial-time algorithm Commit whih takes a messagem and a (random) key K

and produes a ommitment B = Commit(m;K). For a given m, the distribution

of B over a uniformly hosen key K 2 f0; 1g

k

is denoted Commit

k

(m). Commit

must satisfy the following properties:

1. (unambiguity) For any m 6= m

0

, the set of ommitments to m is disjoint

from the set of ommitments to m

0

. That is, there do not exist K, K

0

suh

that Commit(m;K) = Commit(m;K

0

).

2. (serey) For any m;m

0

, ommitments to m and m

0

are omputationally in-

distinguishable. That is, for every (nonuniform) polynomial-time algorithm
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D, there is a negligible funtion � suh that

jPr [D(Commit

k

(m)) = 1℄� Pr [D(Commit

k

(m

0

))℄j � �(k):

Note that a ommitment B an indeed be \opened" by providing the or-

responding message m and key K, and this an be veri�ed by heking that

B = Commit(m;K).

Commitment shemes meeting the above de�nition an be onstrut from any

one-way permutation

5

(exerise). There is a more general de�nition of ommitment

shemes whih allows interation (f., [Gol00℄), and ommitment shemes meeting

the more general de�nition exist if and only if one-way funtions exist [HILL99,

Nao91℄.

Replaing the boxes in Protool 2.4 with a ommitment sheme yields the

\digital" zero-knowledge proof for Graph 3-Coloring given in Protool 2.7.

Protool 2.7: \Digital" Proof System (P; V ) for Graph

3-Coloring

Input: A graph G = ([n℄; E)

1. P : Let C be any anonial 3-oloring of G (e.g., the lexiograph-

ially �rst one). Let � be a uniformly seleted permutation of

fR;G;Bg. Let C

0

= � Æ C.

2. P : For every vertex v 2 [n℄, hoose K

v

uniformly in f0; 1g

n

, let

B

v

= Commit(C

0

(v);K

v

), and send B

v

to V .

3. V : Uniformly selet an edge (x; y) 2 E and send (x; y) to P .

4. P : Send K

x

, K

y

, C

0

(x), and C

0

(y) to V .

5. V : Aept if B

x

= Commit(C

0

(x);K

x

) and B

y

=

Commit(C

0

(y);K

y

), and C

0

(x) 6= C

0

(y).

2.2.3. Proof of Corretness

We now prove the orretness of Protool 2.7, establishing Theorem 2.3.

6

Proposition 2.8. Protool 2.7 is a zero-knowledge proof system for Graph 3-

Coloring.

Proof. Completeness and soundness are proved as they were for \Proposition" 2.5,

using the unambiguity property of ommitment shemes to establish soundness.

The zero-knowledge property follows the same intuition as in the physial pro-

tool | all the veri�er sees is a random pair of distint olors, together with the

unopened ommitments. A random pair of distint olors is something the veri�er

an generate on its own, and the serey property of the ommitment sheme should

imply that the veri�er learns nothing from the unopened ommitments. Based on

this intuition, it is straightforward to simulate the veri�er's view when the veri�er

follows the spei�ed protool: the simulator an randomly selet an edge (x; y) 2 E,

5

One-way permutations are the same objets referred to as \one-to-one one-way funtions" in

Goldreih's leture notes.

6

Exept for the fat that we assume the existene of a ommitment sheme in the simpli�ed sense

of De�nition 2.6, and this is apparently stronger than assuming the existene of one-way funtions.
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onstrut B

x

and B

y

as ommitments to a random pair of distint olors, and on-

strut the remaining ommitments as ommitments to arbitrary olors (sine they

need not be opened).

However, for heating veri�ers, this setting presents an additional subtlety not

present in the physial protool. Unlike boxes, ommitments do not always \look

the same" | they vary as a funtion of their ontents and the key. A heating

veri�er an selet the edge (x; y) in a way that depends on the ommitment. Thus,

unlike the physial setting, the simulator annot determine in advane whih edge

(x; y) the veri�er will selet and then plae a random pair of distint olors in B

x

and B

y

. Instead, the simulator will randomly \guess" whih edge the heating

veri�er will selet, and later hek this by running the veri�er algorithm. We will

argue that the simulator sueeds with notieable probability (� 1=jEj), and hene

polynomially many trials will yield suess with all but negligible probability. A

simulator S

V

�

(for a heating veri�er V

�

) designed aording to this intuition is

given in Algorithm 2.9.

Algorithm 2.9: Simulator S

V

�

for Protool 2.7

Input: A graph G = ([n℄; E), and a heating veri�er algorithm V

�

1. Uniformly selet an edge (x; y) 2 E.

2. De�ne a oloring C

0

: [n℄ ! fR;G;Bg as follows: Selet

(C

0

(x); C

0

(y)) uniformly among the distint pairs from fR;G;Bg,

and for v =2 fx; yg, set C

0

(v) = R.

3. For every v 2 V , hoose K

v

uniformly in f0; 1g

n

and let B

v

=

Commit(C

0

(v);K

v

).

4. Run V

�

to determine whih edge (x

�

; y

�

) it would selet when

sent all the B

v

's. That is, uniformly selet oin tosses r for V

�

and let (x

�

; y

�

) = V

�

(G; fB

v

g; r).

5. If (x

�

; y

�

) 6= (x; y), output fail. Otherwise, output

(fB

v

g

v2V

; (x; y); (K

x

;K

y

; C

0

(x); C

0

(y)); r).

Claim 2.10. For any probabilisti polynomial-time V

�

, there is a negligible fun-

tion � suh that on any input G = ([n℄; E),

1. S

V

�

(G) sueeds with probability at least 1=jEj � �(n).

2. The output distribution of S

V

�

(G), onditioned on suess, is omputation-

ally indistinguishable from hP; V

�

i(G).

In order to prove Claim 2.10, it will be onvenient to onsider a modi�ation

of the distribution hP; V

�

i(G) that inorporates a failure probability:

Distribution hP; V

�

i

f

(G): Choose (x; y) uniformly from E. Sample view =

(fB

v

g

v2V

; (x

�

; y

�

); (K

x

�

;K

y

�

; C

0

(x

�

); C

0

(y

�

)); r) aording to hP; V

�

i(G). If

(x

�

; y

�

) 6= (x; y), output fail. Otherwise, output view.

hP; V

�

i

f

(G) sueeds with probability exatly 1=jEj (sine (x; y) is indepen-

dent of (x

�

; y

�

)), and onditioned on suess, its output distribution is idential

to hP; V

�

i(G). Thus, Claim 2.10 is redued to showing that S

V

�

(G) is omputa-

tionally indistinguishable from hP; V

�

i

f

(G). We will prove this using the serey
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property of the ommitment sheme. More preisely, we will argue that if S

V

�

(G)

ould be distinguished from hP; V

�

i

f

(G), then the following two distributions would

be distinguishable.

Distribution RRR: Output 3n independent ommitments to R.

Distribution RGB: Output n independent ommitments to R, followed by n

independent ommitments to B, followed by n independent ommitments to

G.

(Above, all ommitments are using uniformly seleted keys of length n, i.e., Commit

n

(�).)

Distributions RRR and RGB are omputationally indistinguishable by the serey

of the ommitment sheme and a \hybrid argument" (f., the leture notes of Oded

Goldreih in this volume).

To perform the desired redution, we will give a (nonuniform) polynomial-time

algorithm T whih \transforms" Distributions RRR and RGB into S

V

�

(G) and

hP; V

�

i

f

(G), respetively. Thus T an be used to transform a distinguisher between

the latter pair of distributions into a distinguisher between the former pair. T will

have the graph G = ([n℄; E) and the oloring C used by the prover \hardwired in";

this is why we need it to be nonuniform.

Algorithm 2.11: Transforming Algorithm T

Input: A sequene of 3n ommitments

(B

R

1

; B

R

2

; : : : ; B

R

n

; B

G

1

; : : : ; B

G

n

; B

B

1

; : : : ; B

B

n

)

Nonuniformity: A 3-olorable graph G = ([n℄; E), a 3-oloring C of

G, and a heating veri�er algorithm V

�

1. Uniformly selet an edge (x; y) 2 E.

2. Let � be a uniformly seleted permutation of fR;G;Bg. Let

C

0

= � Æ C.

3. Choose K

x

and K

y

uniformly in f0; 1g

n

. Let B

x

=

Commit(C

0

(x);K

x

), B

y

= Commit(C

0

(y);K

y

).

4. For v =2 fx; yg, Let B

v

= B

C

0

(v)

v

.

5. Uniformly selet oin tosses r for V

�

and let (x

�

; y

�

) =

V

�

(G; fB

v

g; r).

6. If (x

�

; y

�

) 6= (x; y), output fail. Otherwise, output

(fB

v

g

v2V

; (x; y); (K

x

;K

y

; C

0

(x); C

0

(y)); r).

The transforming algorithm T is given in Algorithm 2.11. It an be veri�ed by

inspetion that when T is fed Distribution RGB, its output distribution is exatly

hP; V

�

i

f

(G). On the other hand, when T is fed Distribution RRR, its output

distribution is idential to that of the simulator S

V

�

(G) (sine when C is a proper

3-oloring, C

0

(x) and C

0

(y) are indeed a random pair of distint olors). This proves

that S

V

�

(G)

is omputationally indistinguishable from hP; V

�

i

f

(G), whih in turn

establishes Claim 2.10 and Proposition 2.8.



22 SALIL VADHAN, PROBABILISTIC PROOF SYSTEMS | PART I

2.2.4. Remarks

A few remarks about the proofs of Theorem 2.3 and Proposition 2.8 are in or-

der. First, although the de�nition of interative proofs allows a omputationally

unbounded prover, the strategy of the prover in Protool 2.7 an atually be im-

plemented in polynomial time when given an NP witness (i.e., a 3-oloring of the

graph). This property is ruial in ryptographi appliations of zero-knowledge

proofs, where we typially want the omputations required of all parties to be

eÆient (though we may wish for seurity against omputationally unbounded ad-

versaries).

The simulation is another plae in whih the proof gives something stronger

than required by the de�nition. The de�nition only requires that for every veri-

�er strategy V

�

, there exists a simulator. However, Algorithm 2.9 gives a single

\universal" simulator S whih works for all veri�er strategies V

�

, using this ver-

i�er strategy only as a \blak box." That is, the simulator only requires aess

to the input-output behavior of V

�

, and not the program whih omputes it. All

known zero-knowledge proofs are demonstrated orret using suh universal blak-

box simulation, and it is diÆult to imagine how one would prove the zero-knowledge

property in any other way. On the other hand, there are several limitations on the

eÆieny of blak-box zero-knowledge proofs that are not known to hold for the

general de�nition, so there is some motivation to seek alternatives to this paradigm.

We also remark on the use of NP-ompleteness in the proof of Theorem 2.3.

NP-ompleteness results are most often thought of as \negative" statements, as

they give evidene of a problem's intratability. Here, however, we have used NP-

ompleteness in a \positive" way | to redue the task of proving something about

all of NP to the task of proving something about a single NP-omplete problem,

namely Graph 3-Coloring. (There was a similar positive use of ompleteness in

the proofs of Theorems 1.6 and 1.11.)

Finally, we mention a result showing that the seemingly strong zero-knowledge

ondition atually does not limit the expressive power of interative proofs at all:

Theorem 2.12 ([IY87, BGG

+

88℄). Every problem in IP has a zero-knowledge

proof (assuming one-way funtions exist).

While it is a substantial strengthening of Theorem 2.3 from a omplexity-

theoreti viewpoint, Theorem 2.12 does not yield muh more utility for rypto-

graphi protools. The reason is that the ruial property guaranteed by the proof

of Theorem 2.3 | that the prover an be implemented in polynomial time given

an NP witness | annot be extended to Theorem 2.12 for this property does not

even make sense for problems outside NP.

2.3. Additional Topis

2.3.1. Composition of Zero-Knowledge Proofs

When presenting the Graph 3-Coloring proof system above, we avalierly said

\repeat the protool several times to redue the error probability." While it is true

that repetitions do work for reduing the error probability, their e�et on the zero-

knowledge property is more subtle. To explain the issue in more detail, we need to

be more preise about what we mean by \repetitions." Two natural interpretations

are:
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Sequential Composition: The k exeutions of the proof system are per-

formed one after another. So if the original proof system has message om-

plexity m, the new proof system has message omplexity km.

Parallel Composition: The k exeutions of the proof system are arried out

all at one, \in lok step." That is, the message omplexity of the proof

system remains the same, and eah message of the new proof system onsists

of a k-tuple of messages in the original proof system.

Of these two, the zero-knowledge property is only preserved under sequential

omposition, and even that requires a modi�ation of De�nition 2.2 to allow the ver-

i�er an \auxiliary input" (to model the veri�er's state after prior interations) (f.,

[FS90, GO94, GK96b℄). The fat that zero knowledge is not losed under parallel

omposition makes it diÆult to onstrut zero-knowledge proofs whih simultane-

ously have low message omplexity and negligible error probability. Furthermore,

there are inherent limitations on onstruting suh zero-knowledge proofs, at least

using blak-box simulation:

Theorem 2.13 ([GK96b℄). Only problems in BPP have 3-message blak-box sim-

ulation zero-knowledge proofs with negligible error probabilities (in the ompleteness

and soundness onditions). For publi-oin proofs, the same result holds for any

onstant message omplexity.

Still, using private oins and a stronger omplexity assumption, it is known

how to onstrut onstant-message zero-knowledge proofs.

Theorem 2.14 ([GK96a℄). If a family of \law-free permutations" exists, then

NP has 5-message zero-knowledge proofs.

Reently, muh attention has foused on the behavior of the zero-knowledge

property under more general, \adversarial" forms of repetition to model situations

that an arise in ryptographi appliations. One objet of study along these lines

has been onurrent zero knowledge [DNS98℄, whih asks for protools whose zero-

knowledge property is preserved even when many of them are exeuted at the

same time and the veri�er an adversarially determine how the steps of the various

protools are interleaved. Suh a situation ould arise, for example, when zero-

knowledge proofs are being employed in a distributed environment suh as the

Internet. An even stronger requirement that has been studied is resettable zero

knowledge [CGGM00℄, whih asks that the zero-knowledge property be preserved

even if the veri�er an fore the prover to exeute the protool many times using

the same oin tosses. This might be a realisti attak on physial implementations

of zero-knowledge proofs, where the prover is implemented on, say, a smart ard.

Given that standard zero-knowledge proofs are not losed under even parallel

omposition, it is not surprising that the onstrution of message-eÆient onur-

rent and resettable zero-knowledge proofs is quite diÆult. To overome these

diÆulties, some researhers have onsidered augmenting the model of intera-

tion with additional features suh as \timing" or \publi keys" [DNS98, Dam99,

CGGM00℄. Other researhers have investigated these notions in the standard in-

terative model, attempting to determine the minimal message omplexity needed

for NP to have onurrent or resettable zero-knowledge proofs. While there has

been onsiderable progress, at the time of these letures there is still a signi�-

ant gap between the known upper bounds [RK99, CGGM00, KP00℄ and lower

bounds [KPR98, Ros00℄ (whih are stronger than those given by Theorem 2.13).
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2.3.2. Perfet and Statistial Zero Knowledge

The de�nition of zero-knowledge proofs (De�nition 2.2) requires the simulator's

output to be omputationally indistinguishable from the veri�er's view of the in-

teration. Here, we will onsider two \information-theoreti" strengthenings of this

requirement:

Perfet zero knowledge: The simulator's output distribution is idential to

the veri�er's view of the interation.

Statistial zero knowledge: The simulator's output distribution is statisti-

ally lose to the veri�er's view. More preisely, their statistial di�erene

7

is bounded by a negligible funtion of the input length.

The lass of languages possessing statistial (resp., perfet) zero-knowledge

proofs is denoted SZK (resp., PZK). For ontrast, zero-knowledge proofs in the

sense of De�nition 2.2 are often referred to as omputational zero knowledge and

the lass of languages possessing them is denoted CZK. Clearly, PZK � SZK �

CZK.

Statistial and perfet zero-knowledge proofs provide muh stronger \seurity"

guarantees than omputational ones, in that the zero-knowledge ondition is mean-

ingful even for veri�ers with unbounded omputational power. Surprisingly, these

stronger requirements an be met, and perfet zero-knowledge proofs are known

to exist for a number of nontrivial problems of omplexity-theoreti and ryp-

tographi interest: Quadrati Residuosity and Nonresiduosity [GMR89℄,

Graph Isomorphism and Nonisomorphism [GMW91℄, the Disrete Loga-

rithm problem [GK93℄, and approximate versions of the Shortest Vetor and

Closest Vetor problems in latties [GG00℄.

Despite ontaining these problems believed to be hard, there are are also strong

upper bounds on the omplexity of SZK:

Theorem 2.15 ([For89, AH91℄). SZK � AM \ o-AM.

By Theorem 1.17, this means that it is unlikely that SZK ontains NP-hard

problems. This puts SZK in an intriguing region in omplexity theory | lying

somewhere between the tratable problems (i.e., BPP) and the NP-hard ones.

This is striking ontrast to CZK whih equals PSPACE if one-way funtions

exist (by Theorems 1.11 and 2.12).

Reently, there has been substantial progress in improving our understanding

of statistial zero knowledge. Here, we mention two results whih have shed more

light on the the omplexity of the lass SZK.

Theorem 2.16 ([Oka00℄).

8

SZK is losed under omplement.

This result is surprising beause of the asymmetri de�nition of SZK. There is

no a priori reason to believe that if one an prove that a statement is true in zero

knowledge then one should also be able to prove that it is false in zero knowledge;

this is similar to the intuition that underlies our belief that NP 6= o-NP. In

7

The statistial di�erene between two probability distributions X and Y on a set D is

max

S�D

jPr [X 2 S℄� Pr [Y 2 S℄j.

8

Theorems 2.16 and 2.17 were atually proven for the lass of problems possessing \honest-veri�er"

statistial zero-knowledge proofs, but it has been shown that every honest-veri�er statistial

zero-knowledge proof an be transformed into a general (i.e., heating-veri�er) statistial zero-

knowledge proof [GSV98℄. Also, the omplete problems referred to in Theorem 2.17 are not

languages, but \promise problems" (deision problems in whih some inputs are \exluded").
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Figure 1. Relation of PZK, SZK, and CZK to other omplexity lasses

(assuming one-way funtions exist). Lines indiate left-to-right inlusion.

fat, IP and CZK are also losed under omplement (assuming one-way funtions

exist for CZK), but those are a trivial onsequenes of the more dramati results

showing that they are equal to PSPACE (Thms. 1.11 and 2.12).

Theorem 2.17 ([SV97, GV99℄).

8

SZK has two omplete problems, alled Sta-

tistial Differene and Entropy Differene. (These problems essentially

amount to approximating the statistial di�erene or the di�erene in entropies be-

tween two distributions spei�ed by algorithms (iruits) whih sample from them.)

These problems give a haraterization of SZK that makes no referene to

interation or zero knowledge, and provide further evidene that SZK aptures a

rih and natural lass of omputational problems. Furthermore, they have proven

to be very useful for obtaining general results about SZK, as they redue questions

about the entire lass to ones about a single problem. Thus, we see more \positive"

uses of ompleteness in this area.

There are many open problems regarding statistial zero knowledge (f., [Vad99℄),

but here we just mention two.

Open Problem 2.18. Does SZK = PZK?

Open Problem 2.19. Find a omplete problem for SZK that is ombinatorial or

number-theoreti (rather than statistial) in nature.

2.4. Exerises

Exerise 1 (Commitment shemes). Construt a ommitment sheme from any

one-way permutation (whih annot be inverted by polynomial-sized iruits).

9

Exerise 2 (Honest-veri�er zero knowledge). An honest-veri�er zero-knowledge proof

is one in whih the simulation ondition is only required to hold for the spei�ed

veri�er V (rather than all polynomial-time veri�ers V

�

).

1. Show that the interative proof for Graph Nonisomorphism given in le-

ture is honest-veri�er (perfet) zero knowledge.

2. Construt a similar honest-veri�er perfet zero-knowledge proof system for

Quadrati Nonresiduosity, i.e., the language

QNR = f(n; x) : there is no y suh that y

2

= x (mod n)g:

9

The key-length in your onstrution may depend on the message length, although tehnially

De�nition 2.6 does not allow suh a dependene. (This dependeny an be removed using a

pseudorandom generator, as de�ned in the leture notes of Goldreih in this volume.)
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Exerise 3 (Perfet zero knowledge). Exhibit a perfet zero-knowledge proof for

Quadrati Residuosity, i.e., the omplement of Quadrati Nonresiduosity

from Problem 2. (You should exhibit a simulator even for heating veri�ers. The

simulation may fail with probability, say, 1=2, as long as its output distribution is

orret onditioned on non-failure.)

Exerise 4 (Resettable zero knowledge). Informally, a zero-knowledge proof is re-

settable if it remains zero knowledge even when the veri�er an fore the prover to

use the same oin tosses in polynomially many interations. Find a zero-knowledge

proof whih is not resettable (under a reasonable omplexity assumption).

Solution Skethes

Solution 1. Let B be a hard-ore prediate for a one-way permutation f . To

ommit to a bit b, hoose x at random and output (f(x); B(x) � b). Unambiguity

follows beause f is one-to-one. And serey follows from the fat that (f(x); B(x))

is indistinguishable from uniform and hene also from (f(x); B(x) � 1). (See the

onstrution of pseudorandom generators whih streth by 1 bit in Goldreih's

leture notes.) To ommit to a long message m, apply this ommitment sheme to

eah bit ofm (using independently hosen x's for eah bit). The indistinguishability

of Commit(m) and Commit(m

0

) for all m, m

0

follows from a hybrid argument

reduing to serey of the 1-bit ommitment sheme. (The redution will need to

have the messages m;m

0

hardwired in; this is why we need to work with iruits

rather than uniform adversaries.)

Solution 2. For Graph Nonisomorphism, the simulator just mimis the veri�er

and produes a transript in whih the prover answers orretly (whih happens

w.p. 1 in the real interation on YES instanes). The proof system for Quadrati

Nonresiduosity is as follows: the veri�er hooses a random r 2 Z

�

n

and ips a

oin b 2 f0; 1g. If b = 0, she sends the prover r

2

and if b = 1, she sends the prover

x �r

2

. The prover must guess b. When x is a quadrati nonresidue, the distributions

r

2

and xr

2

are disjoint; otherwise, they are idential. The analysis proeeds as for

Graph Nonisomorphism.

Solution 3. On input (n; x), the prover sends the veri�er a random square s mod-

ulo n, and then the veri�er asks the prover to return a square root of either s

or sx; the prover hooses one of the possible square roots at random. If x is a

square, this will always be possible. If x is a nonsquare, at most 1 of x; sx has a

square root, so the veri�er will rejet with probability at least 1=2. The simulator

hooses r uniformly in Z

�

n

, randomly guesses the veri�er's hallenge, and aord-

ingly sends either s = r

2

or s = r

2

=x as the prover's message. It then runs the

veri�er V

�

to �nd out whether it guessed the hallenge orretly. If yes, it uses r

as the prover's last message. If not (whih happens w.p. 1/2), it fails. It an be

veri�ed that onditioned on non-failure, the output distribution is idential to the

real interation.

Solution 4. The proof system for Graph 3-Coloring given in leture is an ex-

ample. By making the prover run n with the same oin tosses and querying an edge

touhing a new vertex eah time, the veri�er an learn a 3-oloring of the graph.

Hene this annot be simulated in poly-time unless NP � BPP.



SUGGESTIONS FOR FURTHER READING

These letures were not intended to be omprehensive surveys of the areas overed.

The \additional topis" setions in partiular were designed to give a small sample

of reent researh diretions and open problems, and are largely a reetion of the

author's own interests. Here we mention some plaes where the interested reader

an learn more about this area.

[Gol99, Ch. 2℄ ontains a broad survey of probabilisti proof systems, inluding

variants of interative and zero-knowledge proofs not treated in these letures. More

details of proof that IP = PSPACE (Thm. 1.11) an be found in [Sip97, 10.4℄.

An entertaining aount of the ideas leading up to that theorem an be found in

[Bab90℄. Zero-knowledge proofs are overed in great depth and detail in [Gol00,

Ch. 4℄. A uni�ed treatment of the reent work on statistial zero knowledge an

be found in [Vad99℄.
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