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LECTURE 1

Intera
tive Proofs

The notion of a proof is 
entral to mathemati
s and 
omputer s
ien
e, and

hen
e has been the subje
t of mu
h investigation in both �elds. Indeed, from

previous le
tures in this volume, the reader should already be aware of the intimate


onne
tion between traditional mathemati
al proofs and the fundamental questions

of 
omplexity theory (e.g., P

?

= NP and NP

?

= 
o-NP). In this le
ture series

(and the subsequent one by Madhu Sudan), we will examine several nontraditional

notions of proof whi
h have been at the 
enter of some very ex
iting developments

in 
omplexity theory.

Re
all that proofs are given their meaning by spe
ifying a pro
edure for verify-

ing them. To formalize this, both assertions and proofs are written as strings over

some �nite alphabet, and a language L is used to identify the strings representing

\true assertions." A 
lassi
al proof system for L is given by a veri�
ation algorithm

V with the following two properties:

1. (Completeness) True assertions have proofs. That is, if x 2 L, then there

exists proof su
h that V (x; proof ) = a

ept.

2. (Soundness) False assertions have no proofs. That is, if x =2 L, then for all

proof

�

, V (x; proof

�

) = reje
t.

3. (EÆ
ien
y) V (x; proof ) runs in time poly(jxj).

Clearly, 
ompleteness and soundness are 
entral to our intuitive notion of proof.

Some form of eÆ
ien
y is also important, for if one 
ould de
ide whether the as-

sertion is true in less time than it takes to verify the proof, then the proof loses its
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usefulness. Re
all that NP is the 
lass of languages having 
lassi
al proof systems

as de�ned above.

In these le
tures, we will 
onsider augmenting the above notion with two new

ingredients (as proposed in [GMR89, BM88℄). The �rst is randomization; that is,

we will allow the veri�
ation pro
edure to toss 
oins and a

ept or reje
t in
orre
tly

with some small probability. While this is a substantial deviation from the 
las-

si
al viewpoint whereby proofs establish the truth of an assertion with 
ertainty,

it is natural given the wide a

eptan
e of randomized 
omputations as reasonable

substitutes for deterministi
 ones. The se
ond new ingredient is intera
tion. Clas-

si
ally, proofs are viewed as stati
 obje
ts that are written and �xed, before being

examined in their entirety by the veri�
ation pro
edure. Instead, we will allow the

veri�er to intera
t with a dynami
, all-powerful \prover" who will try to 
onvin
e

the veri�er of the validity of the assertion at hand.

Sin
e the 
lassi
al notion of proof seems to be adequate, the reader may won-

der what we gain by augmenting proof systems in these ways. Most dire
tly, we

obtain a more general notion of \eÆ
iently veri�able proofs" whi
h, in addition

to having possible philosophi
al value, provides eÆ
ient proofs for more assertions

than 
lassi
al proofs do (as we shall see in Se
tion 1.3). The new notions are also

very useful for statements that do possess 
lassi
al proofs. For example, they 
an

yield dramati
 eÆ
ien
y savings in veri�
ation (as we will see in the PCP Theorem

presented in Madhu Sudan's le
tures). The new notions also enable us to to de�ne

and a
hieve properties that are meaningless (or trivial) for 
lassi
al proofs. For

example, in Le
ture 2 we will 
onstru
t zero-knowledge proofs, whi
h are proofs

that reveal nothing other than the validity of the assertion being proven! We also

obtain new insight into 
lassi
al proofs and 
omplexity 
lasses by 
hara
terizing

them in terms of the new types of proof systems. Finally, the new types of proof

systems have appli
ations to other topi
s in 
omputer s
ien
e: the probabilisti
ally


he
kable proofs of Madhu Sudan's le
tures yield insight into the approximability

of optimization problems (
f., the le
tures of Sanjeev Arora in this volume) and

the zero-knowledge proofs of Le
ture 2 have wide appli
ability in 
ryptographi


proto
ols (indeed, this was one of the main motivations of [GMR89℄).

1.1. De�nitions

Basi
 Notation: Let A be a probabilisti
 algorithm. A(x; r) denotes the output

of A when fed input x and 
oin tosses r. A(x) denotes the distribution of A(x; r)

when r is 
hosen uniformly at random. We say that A runs in time t(n) if for all x

of length n, A(x; r) halts within t(n) steps with probability 1 over the 
hoi
e of r.

As suggested above, we will obtain a new type of proof system by repla
ing 
las-

si
al (NP) proofs with a \prover" that \intera
ts" with a probabilisti
 \veri�er".

In order to make this pre
ise, we must �rst formalize the notion of an intera
tive

proto
ol between two parties A and B. We do this by viewing ea
h party as a

fun
tion, taking the history of the proto
ol (all the messages previously ex
hanged)

and the party's random 
oins, to the party's next message. Either party 
an de
ide

to halt the intera
tion (possibly a

epting or reje
ting), at whi
h point the other

party is given an opportunity to 
ompute one more message.

De�nition 1.1 (intera
tive proto
ols). An intera
tive proto
ol (A;B) is any pair

of fun
tions from strings to strings. The intera
tion between A and B on 
ommon

input x is the following random pro
ess (denoted (A;B)(x)):
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1. Uniformly 
hoose random 
oin tosses r

A

and r

B

for A and B, respe
tively.

2. Repeat the following for i = 1; 2; : : : :

(a) If i is odd, let m

i

= A(x;m

1

; : : : ;m

i�1

; r

A

).

(b) If i is even, let m

i

= B(x;m

1

; : : : ;m

i�1

; r

B

).

(
) If m

i�1

2 fa

ept; reje
t; haltg, then exit loop.

If the last message 
omputed by A is a

ept (resp., reje
t), we say that A

a

epts (resp., reje
ts), and similarly for B. We 
all su
h a proto
ol polynomially

bounded if there is a polynomial p(�) su
h that, on 
ommon input x, at most p(jxj)

messages are ex
hanged, and ea
h is of length at most p(jxj) (with probability 1 over

the 
hoi
e of r

A

and r

B

).

Originally, intera
tive proto
ols were de�ned in terms \intera
tive Turing ma-


hines," but that approa
h is too tied to a parti
ular model of 
omputation for our

tastes.

Now intera
tive proofs 
an be de�ned as a type of intera
tive proto
ol between

a prover (with no 
omputational limitations) and a polynomial-time veri�er. The


ompleteness and soundness 
onditions of 
lassi
al proofs are repla
ed with proba-

bilisti
 ones whi
h guarantee that the veri�er gains statisti
al 
on�den
e that the

assertion being proven is true.

De�nition 1.2 (intera
tive proofs | IP [GMR89, BM88℄). An intera
tive pro-

to
ol (P; V ) is said to be an intera
tive proof system for a language L if the following


onditions hold:

1. (EÆ
ien
y) (P; V ) is polynomially bounded and V is polynomial-time 
om-

putable.

2. (Completeness) If x 2 L, then V a

epts with probability at least 2=3 in

(P; V )(x).

3. (Soundness) If x =2 L, then for any P

�

, V a

epts with probability at most

1=3 in (P

�

; V )(x).

IP is 
lass of languages possessing intera
tive proofs.

We now make some basi
 observations about the above de�nition.

� The a

eptan
e probabilities of 2=3 and 1=3 allowed in the above de�nition

are arbitrary, and 
an be repla
ed with any pair of 
onstants 1 > � >

� > 0. Indeed, the error probability of any su
h proof system 
an be made

exponentially small by taking polynomially many repetitions and having the

veri�er a

ept a

ording to majority/threshold rule.

� Intera
tive proofs do indeed generalize 
lassi
al proofs, be
ause the prover


an simply send the veri�er a 
lassi
al proof, whi
h the veri�er then 
he
ks.

Thus, NP � IP. The main question we will address in this le
ture is

whether IP is stri
tly bigger than NP, and by how mu
h. It is left as an

exer
ise to prove the upper bound IP � PSPACE.

� The veri�er's randomness is essential in intera
tive proofs: IP with deter-

ministi
 veri�ers 
ollapses to NP (exer
ise). On the other hand, restri
ting

to a deterministi
 prover 
auses no loss of generality (exer
ise).

1.2. Graph Nonisomorphism

Our �rst hint that intera
tive proofs are stri
tly more powerful than 
lassi
al ones

will 
ome from an elegant proof system for Graph Nonisomorphism.
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De�nition 1.3. If G = ([n℄; E) is an undire
ted graph

1

and � is a permutation on

[n℄, then �(G) denotes the graph obtained by permuting the verti
es of G a

ording

to �. That is, �(G) = ([n℄; E

0

), where E

0

= f(�(u); �(v)) : (u; v) 2 Eg. If G and

H are graphs on n verti
es, and there exists a � su
h that �(G) = H, we say that

G and H are isomorphi
 and write G

�

=

H. � is 
alled an isomorphism between

G and H, and H is said to be an isomorphi
 
opy of G. Graph Isomorphism

is the language GI = f(G;H) : G

�

=

Hg: Graph Nonisomorphism (GNI) is the


omplement of GI.

It is easy to see that Graph Isomorphism is in NP: an easily veri�able proof

that two graphs are isomorphi
 is an isomorphism between them. In 
ontrast, no


lassi
al proofs are known for Graph Nonisomorphism. Nevertheless, as we shall

see, Graph Nonisomorphism does possess a very eÆ
ient intera
tive proof:

2

Theorem 1.4 ([GMW91℄). Graph Nonisomorphism is in IP.

The intera
tive proof is based on two observations. First, if two graphs are

nonisomorphi
, then their sets of isomorphi
 
opies are disjoint. Se
ond, if two

graphs are isomorphi
, then a random isomorphi
 
opy of one graph is indistin-

guishable from a random isomorphi
 
opy of the other. Thus, the intera
tive proof,

given in Proto
ol 1.5, tests whether the prover 
an distinguish between random

isomorphi
 
opies of the two graphs.

Proto
ol 1.5: Intera
tive proof (P; V ) for Graph

Nonisomorphism

Input: Graphs G

0

= ([n℄; E

0

) and G

1

= ([n℄; E

1

)

1. V : Uniformly sele
t b 2 f0; 1g. Uniformly sele
t a permutation

� on [n℄. Let H = �(G

b

). Send H to P .

2. P : If G

0

�

=

H , let 
 = 0. Else let 
 = 1. Send 
 to V .

3. V : If 
 = b, a

ept. Otherwise, reje
t.

We now verify that this proto
ol meets the de�nition of an intera
tive proof.

Proof of Theorem 1.4 (sket
h). If G

0

and G

1

are nonisomorphi
, then G

0

�

=

H

if and only if b = 0. So the prover strategy spe
i�ed above will make the veri�er

a

ept with probability 1. Thus, 
ompleteness is satis�ed.

On the other hand, if G

0

and G

1

are isomorphi
, then H has the same dis-

tribution when b = 0 as it does when b = 1 (exer
ise). Thus, b is independent of

H and the prover has at most probability at most 1=2 of guessing b 
orre
tly no

matter what strategy it follows. This shows that the proto
ol is sound.

A few remarks about the proof system are in order. The �rst is it a
hieves an

a

eptan
e probability of 1 in the 
ompleteness 
ondition; this attra
tive property

is often referred to as perfe
t 
ompleteness. Se
ond, the proof system is very 
om-

muni
ation eÆ
ient: only two messages are ex
hanged and the prover sends only

1

To avoid notational 
onfusion with the veri�er strategy V , all of our graphs will have vertex set

[n℄

def

= f1; : : : ; ng for some n 2 N.

2

There has been some re
ent eviden
e that Graph Nonisomorphism is inNP, in fa
t based on the

existen
e of an eÆ
ient intera
tive proof for Graph Nonisomorphism [AK97, KvM99, MV99℄.
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one bit to the veri�er (more generally, k bits to a
hieve soundness probability 1=2

k

).

Finally, note that it is 
ru
ial for soundness that the veri�er's random 
oin 
ips are

kept \private." If the bit b is made publi
 and revealed to the prover, soundness

will no longer hold. Surprisingly, every private-
oin intera
tive proof (like the one

above) 
an be transformed into a publi
-
oin one; that is, one in whi
h the veri�er's


oin 
ips are 
ompletely visible to the prover [GS89℄.

1.3. 
o-NP and more

In the previous se
tion, we saw an intera
tive proof for a problem not known to

have eÆ
ient 
lassi
al proofs, giving the �rst eviden
e that IP is stri
tly larger than

NP. In this se
tion, we shall obtain mu
h stronger eviden
e:

Theorem 1.6 ([LFKN92℄). 
o-NP � IP.

It is widely believed that NP 6= 
o-NP (
f., the le
tures of Paul Beame in this

volume), so this strongly suggests that intera
tive proofs are more powerful than


lassi
al ones.

1.3.1. A First Attempt

By the NP-
ompleteness of Satisfiability, proving that 
o-NP � IP is equiv-

alent to giving an intera
tive proof for Unsatisfiability. So let us 
onsider how

one may try to prove that a formula ' is unsatis�able. A
tually, it will be useful to


onsider how to prove that a formula ' has exa
tly k satisfying assignments for any

k. That is, we want to give an intera
tive proof for Exa
t #SAT, the language

E#SAT

def

= f('; k) : ' has exa
tly k satisfying assignmentsg

Observation. A formula '(x

1

; : : : ; x

n

) has exa
tly k satisfying assignments i�

there exist k

0

, k

1

su
h that

1. k

0

+ k

1

= k,

2. '

0

(x

2

; : : : ; x

n

)

def

= '(0; x

2

; : : : ; x

n

) has exa
tly k

0

satisfying assignments, and

3. '

1

(x

2

; : : : ; x

n

)

def

= '(1; x

2

; : : : ; x

n

) has exa
tly k

1

satisfying assignments.

This observation suggests a �rst idea for proving that ' has exa
tly k satisfying

assignments: First, the prover sends the veri�er k

0

and k

1

. Se
ond, the veri�er


he
ks that k

0

+ k

1

= k, and randomly sele
ts a value b 2 f0; 1g for the �rst

variable. Then the prover re
ursively proves to the veri�er (using the same proto
ol)

that '

b

has exa
tly k

b

satisfying assignments. (At the bottom of the re
ursion

when the formula has no variables, the veri�er simply 
he
ks that evaluates to

0 or 1 a

ording to whether the prover has 
laimed that it has 0 or 1 satisfying

assignments, respe
tively.)

When ' has exa
tly k satisfying assignments, the veri�er will a

ept with prob-

ability 1 in this proto
ol. Conversely, when ' does not have exa
tly k satisfying

assignments, one of the 
onditions in the observation must fail to hold, so there is a

nonzero probability that the prover will 
ontinue to have a false statement to prove

(unless k

0

+ k

1

6= k, in whi
h 
ase the veri�er will reje
t immediately). Continuing

this argument indu
tively, we 
on
lude that the veri�er has a nonzero probability

of reje
ting overall. However, it is not an intera
tive proof be
ause, in the sound-

ness 
ase, the veri�er may a

ept with probability 1�2

�n

, whi
h is not suÆ
iently

bounded away from 1. This is be
ause, for ea
h variable of the formula, the veri�er
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may have only probability 1=2 of setting the variable in a way that leaves the prover

with something false to prove.

1.3.2. Arithmetization

Intuitively, the problem des
ribed above 
omes from the fa
t that every variable of

the formula has only two possible values and we 
an only guarantee that at least

one of these values will re
e
t the falsity of the assertion that the prover is trying

to prove. An idea for solving this is to allow the variables to take values in a larger

set F (� f0; 1g), and extend the formula ' : f0; 1g ! f0; 1g to a more \robust"

fun
tion ~' : F

n

! F so that \most" evaluation points will re
e
t in
onsisten
ies.

We will do this extension via powerful te
hnique known as arithmetization. We

will take F to be a suÆ
iently large �nite �eld and show how to extend ' to a

(multivariate) low-degree polynomial over F. The robustness properties we desire

will be based on the fa
t that two distin
t low-degree polynomials 
annot agree in

many pla
es.

We re
ursively de�ne a mapping ' 7! ~' from Boolean formulas in variables

x

1

; : : : ; x

n

to polynomials over F in variables x

1

; : : : ; x

n

:

~x

i

= x

i

f:' = 1� ~'

^

' ^  = ~' �

~

 

(Without loss of generality, we restri
t our attention to formulas over the 
omplete

basis : and ^.)

The following are easily veri�ed by indu
tion:

1. ~'j

f0;1g

n

= '.

2. The (total) degree of the polynomial ~' is at most d = j'j.

Proving that ' has exa
tly k satisfying assignments is equivalent to proving

k =

X

x

1

2f0;1g

X

x

2

2f0;1g

� � �

X

x

n

2f0;1g

~'(x

1

; : : : ; x

n

)(1.7)

(provided that the 
hara
teristi
 of F is greater than 2

n

, whi
h 
an be guaranteed

by 
hoosing F = Z=qZ for a prime q > 2

n

). The proto
ol for proving Equation (1.7)

will pro
eed analogously to the �rst attempt above, generalized to this setting where

the variables 
an take values in F. The prover will send the veri�er the values

k

�

def

=

X

x

2

2f0;1g

� � �

X

x

n

2f0;1g

~'(�; x

2

; : : : ; x

n

)(1.8)

for every � 2 F (rather than just k

0

and k

1

as before). As before, the veri�er will


he
k that k

0

+k

1

= k, and then 
hoose a random � 2 F on whi
h the prover should

re
ursively prove that Equation (1.8) holds. The key observation whi
h makes this

work is that the k

�

's 
an all be spe
i�ed by a degree d polynomial p satisfying

p(�) = k

�

8� (be
ause ~' is of degree d). This helps in two ways. First, it allows

all the values fk

�

g to be spe
i�ed su

in
tly by the prover by giving the d + 1


oeÆ
ients of p. (The entire list given expli
itly would be of size jFj > 2

n

, whi
h is

too large). Se
ond, it guarantees that if the prover sends a wrong value for a single

k

�

, then the prover must send a wrong value for most k

�

's.
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1.3.3. The Proof System

Formalizing the above ideas, we obtain Proto
ol 1.9.

Proto
ol 1.9: Intera
tive Proof for E#SAT

Input: A formula '(x

1

; : : : ; x

n

) and an integer k

1. P; V : Let d = j'j, and let F be a �nite �eld of 
hara
teristi


greater than 2

d

(� 2

n

), and let ~'(x

1

; : : : ; x

n

) be the arithmeti-

zation of ' (over F).

2. P : Compute the degree d polynomial

p

1

(x)

def

=

X

x

2

2f0;1g

� � �

X

x

n

2f0;1g

~'(x; x

2

; : : : ; x

n

);

and send p

1

to V .

3. V : Che
k that p

1

(0)+p

1

(1) = k (and reje
t immediately if not).

4. V : Choose �

1

uniformly from F and send �

1

to P .

5. P; V : From i = 2 to n, do the following:

(a) P : Compute the degree d polynomial

p

i

(x)

def

=

X

x

i+1

2f0;1g

� � �

X

x

n

2f0;1g

~'(�

1

; : : : ; �

i�1

; x; x

i+1

; : : : ; x

n

);

and send p

i

to V .

(b) V : Che
k that p

i

(0) + p

i

(1) = p

i�1

(�

i�1

) (and reje
t im-

mediately if not).

(
) V : Choose �

i

uniformly from F and send �

i

to P .

6. V : A

ept if p

n

(�

n

) = ~'(�

1

; : : : ; �

n

).

Proposition 1.10. Proto
ol 1.9 is an intera
tive proof system for Exa
t #SAT.

Proof. EÆ
ien
y 
an be veri�ed by inspe
tion. Also by inspe
tion, we see that

if ' has exa
tly k satisfying assignments and the prover 
omputes all the p

i

's

a

ording to the spe
i�ed proto
ol, then all the veri�er's 
he
ks will pass. That

is, p

1

(0) + p

1

(1) = k, p

i

(0) + p

i

(1) = p

i�1

(�

i�1

) for all i > 1, and p

n

(�

n

) =

~'(�

1

; : : : ; �

n

).

Thus, we need only prove soundness. We will argue that if ' does not have k

satisfying assignments, then, no matter what strategy P

�

the prover follows, the

veri�er will a

ept with probability at most nd=jFj < d

2

=2

d

< 1=3 (for suÆ
iently

large d = j'j).

Let p

1

(x); : : : ; p

n

(x) denote the polynomials 
omputed 
orre
tly (as pres
ribed

by Proto
ol 1.9), and let p

�

1

(x); : : : ; p

�

n

(x) denote the polynomials sent by P

�

. Note

that p

1

(0) + p

1

(1) is exa
tly the number of satisfying assignments of '. Thus, if '

does not have exa
tly k satisfying assignments, then no matter what p

�

1

the prover

sends, either (a) p

�

1

(0) + p

�

1

(1) 6= k, or (b) p

�

1

6= p

1

. If (a) holds, then the veri�er

will reje
t immediately. If (b) holds, then with high probability (� 1 � d=jF j)

p

�

1

(�

1

) 6= p

1

(�

1

) (be
ause p

�

1

and p

1

are distin
t degree d polynomials, and hen
e

agree on at most d points). Thus, after the �rst variable is set, the prover will be

left with a false assertion to prove with high probability (rather than probability

1=2), as desired.



8 SALIL VADHAN, PROBABILISTIC PROOF SYSTEMS | PART I

Later rounds are analyzed in a similar fashion. Assume that

p

�

i�1

(�

i�1

) 6= p

i�1

(�

i�1

) = p

i

(0) + p

i

(1):

Then no matter what p

�

i

the prover sends, it must be the 
ase that either (a)

p

�

i

(0) + p

�

i

(1) 6= p

�

i�1

(�

i�1

), or (b) p

�

i

6= p

i

. As before, if (a) holds the veri�er will

reje
t immediately, and if (b) holds, then p

�

i

(�

i

) 6= p

i

(�

i

) with probability at least

1� d=jFj.

By a union bound, it follows that, with probability at least 1 � nd=jFj, the

veri�er reje
ts or p

�

n

(�

n

) 6= p

n

(�

n

) = ~'(�

1

; : : : ; �

n

). Sin
e the veri�er will also

reje
t in the latter 
ase, soundness is established.

1.3.4. A Full Chara
terization


o-NP � IP (Thm. 1.6) follows from Proposition 1.10 be
ause Unsatisfiability

redu
es to Exa
t #SAT via the map ' 7! ('; 0). In fa
t, it even follows that

P

#P

� IP. With some additional ideas, we obtain a 
omplete 
hara
terization of

the power of intera
tive proofs.

Theorem 1.11 ([Sha92℄). IP = PSPACE

Proof sket
h. Re
all that a 
omplete problem forPSPACE isQuantified Bool-

ean Formulae (QBF), i.e., the language of true assertions of the form

8x

1

9x

2

8x

3

� � � 9x

n

'(x

1

; : : : ; x

n

);

where ' is a Boolean formula. Let's attempt to dire
tly extend the ideas of Pro-

to
ol 1.9 to this problem. That is, extend the arithmetization to formulas with

quanti�ers, and 
onstru
t a proto
ol whi
h eliminates one variable/quanti�er at a

time (with the veri�er 
hoosing random values in some �eld). Let '(x

1

; : : : ; x

i

) be

a partially quanti�ed formula with free (i.e., unquanti�ed) variables x

1

; : : : ; x

i

(and

\bound" variables x

i+1

; : : : ; x

n

). We de�ne its arithmetization ~'(x

1

; : : : ; x

i

) as fol-

lows. If ' has no quanti�ers (i.e., i = n), then ~' is de�ned just as in Se
tion 1.3.2.

If ' = 8x

i+1

 (x

1

; : : : ; x

i+1

) then

~'(x

1

; : : : ; x

i

) =

~

 (x

1

; : : : ; x

i

; 0) �

~

 (x

1

; : : : ; x

i

; 1)(1.12)

If ' = 9x

i+1

 (x

1

; : : : ; x

i+1

) then

~'(x

1

; : : : ; x

i

) = 1�

�

1�

~

 (x

1

; : : : ; x

i

; 0)

�

�

�

1�

~

 (x

1

; : : : ; x

i

; 1)

�

(1.13)

This arithmetization maintains the property that the arithmetized formulas agree

with original formulas whenever the free variables are assigned values from f0; 1g. In

parti
ular, proving that a fully quanti�ed Boolean formula is in QBF is equivalent

to proving that its arithmetization is the 
onstant polynomial 1.

The problem with this new arithmetization is that the degrees blow up, squaring

with every quanti�er. The result is the polynomials the prover would have to send

in a proto
ol like Proto
ol 1.9 would be of exponentially large degree, and the proof

system will fail to satisfy the eÆ
ien
y requirement. The solution is to introdu
e

operations that redu
e the degree but have no e�e
t on boolean values. Suppose

f(x

1

; : : : ; x

i

) is a polynomial and, for some j 2 f1 : : : ; ig, 
onsider the polynomial

f

0

(x

1

; : : : ; x

i

) = x

j

� f(x

1

; : : : ; x

j�1

; 1; x

j+1

; : : : ; x

n

) +(1.14)

(1� x

j

) � f(x

1

; : : : ; x

j�1

; 0; x

j+1

; : : : ; x

n

):
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f

0

is identi
al to f when its variables take on boolean values, yet the degree of x

j

is

redu
ed to 1 in f

0

. Interleaving this operation periodi
ally for every unquanti�ed

variable prevents the degree blow-up en
ountered above, and allows a 
onstru
tion

of proof system like Proto
ol 1.9 for QBF. (The proto
ol has a \round" for ea
h

quanti�er and ea
h appli
ation of the degree-redu
tion operation, and the 
onsis-

ten
y 
he
ks p

i

(0)+p

i

(1) = p

i�1

(�

i�1

) are repla
ed with ones to 
he
k 
onsisten
y

with Equations (1.12), (1.13), and (1.14).)

1.4. Additional Topi
s

1.4.1. Message Complexity

A striking 
ontrast between the intera
tive proofs for Graph Nonisomorphism

(Proto
ol 1.5) and 
o-NP/PSPACE (Proto
ol 1.9) is that the latter requires mu
h

more intera
tion, as measured in the following way:

De�nition 1.15 (message 
omplexity

3

). An intera
tive proto
ol (A;B) has mes-

sage 
omplexity m(n) if on every input x and every 
hoi
e of the random 
oins for

A and B, the number of messages 
omputed before the �rst a

ept/reje
t/halt

message is at most m(jxj).

The 
lass of languages possessing intera
tive proofs with 
onstant message 
om-

plexity is denoted AM.

4

It is natural to ask whether more intera
tion in
reases the expressive power of

intera
tive proofs. That is, are there languages whi
h have intera
tive proofs of

message 
omplexity m(n) but not m

0

(n) for some fun
tions m

0

;m? The following

result shows that in
reasing the number of messages by a 
onstant fa
tor does not

yield more power:

Theorem 1.16 ([BM88℄). For any 
onstant 
 2 N and any fun
tion m(�) � 2,

the following holds: If L has an intera
tive proof with message 
omplexity 
m(�),

then L has an intera
tive proof with message 
omplexity m(�).

On the other hand, it is known that intera
tive proofs with 
onstant message


omplexity 
an only prove languages that are low in the polynomial-time hierar
hy

(spe
i�
ally, AM � �

2

) [BM88℄, we have seen that all of PSPACE is provable

with no restri
tion on the number of messages (Thm. 1.11). Hen
e, polynomially

many rounds of intera
tion 
annot be redu
ed to a 
onstant unless PSPACE = �

2

.

In fa
t, it is unlikely that su
h an improvement is possible even for 
o-NP:

Theorem 1.17 ([BHZ87℄). If 
o-NP � AM, then the polynomial-time hierar
hy


ollapses (spe
i�
ally, PH = �

2

).

Re
all that it is widely believed that the polynomial-time hierar
hy does not


ollapse (
f., the le
tures of Steven Rudi
h in this volume). Sin
e Graph Noniso-

morphism is in AM (Proto
ol 1.5 
onsists of two rounds), we obtain the following

interesting 
onsequen
e:

Corollary 1.18. Graph Isomorphism is notNP-
omplete unless the polynomial-

time hierar
hy 
ollapses.

4

The notation AM 
omes from Arthur{Merlin games, whi
h was the name given to the type

of intera
tive proofs introdu
ed in [BM88℄. Arthur{Merlin games are the same as publi
-
oin

intera
tive proofs, whi
h we dis
uss in Se
tion 1.4.2.
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2

� � �

PH IP = PSPACEP

#P

Figure 1. Relation of IP and AM to other 
omplexity 
lasses. Lines indi
ate

left-to-right in
lusion.

Proof. If Graph Isomorphism were NP-
omplete, the Graph Nonisomor-

phism would be 
o-NP-
omplete and we would have 
o-NP � AM.

The above proof refers to NP-
ompleteness via standard Karp redu
tions (also

known as \many-one" or \mapping" redu
tions), but it 
an be easily extended

to more general forms of redu
ibility su
h as Cook redu
tions [S
h88℄ (see also

[GG00℄).

1.4.2. Private Coins vs. Publi
 Coins

Re
all that it was essential in the proof system for Graph Nonisomorphism

(Proto
ol 1.5) that the veri�er's 
oin tosses are \private," meaning that they are not

visible to the prover. In striking 
ontrast, the veri�er needs no hidden randomness

in the proof systems for 
o-NP (Proto
ol 1.9) and PSPACE. That is, those proof

systems satisfy the following de�nition:

De�nition 1.19 (publi
-
oin proofs [BM88℄). An intera
tive proof system is

publi
 
oin if ea
h of the veri�er's messages 
onsists of random 
oin tosses, uniform

and independent of the previous messages (ex
ept for the last a

ept=reje
t=halt

message).

Sin
e PSPACE has a publi
-
oin proof system and IP = PSPACE, it follows

that publi
-
oin intera
tive proofs are as powerful as private-
oin ones. However,

there is a stronger (and older) equivalen
e between private 
oins and publi
 
oins

that also preserves message 
omplexity:

Theorem 1.20 ([GS89℄). If a language has an intera
tive proof with message


omplexity m(n), then it has a publi
-
oin intera
tive proof with message 
omplexity

m(n).

This theorem is very useful in proving results about intera
tive proofs, sin
e

the stru
tured behavior of the veri�er in publi
-
oin proofs makes them mu
h easier

to analyze and manipulate. Indeed, the proofs of Theorems 1.16 and 1.17 begin by

using Theorem 1.20 to redu
e to the publi
-
oin 
ase.

Applying Theorem 1.20 to the proof system for Graph Nonisomorphism

(Proto
ol 1.5), we obtain the following 
onsequen
e:

Corollary 1.21. Graph Nonisomorphism has a 2-message publi
-
oin intera
-

tive proof system.

One of the exer
ises involves 
onstru
ting a 2-message publi
-
oin intera
tive

proof for a problem related to Graph Nonisomorphism (using the same tools

that underlie the proof of Theorem 1.20).
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1.4.3. The Power of the Prover

Even though the de�nition of intera
tive proofs pla
es no 
omputational restri
tions

on the prover strategy, it is interesting to investigate what power the prover a
tually

needs. If (P; V ) is an intera
tive for a language L, then the 
omplexity of the prover

strategy P must, in some sense, be at least the 
omplexity of the language L itself,

be
ause one 
an de
ide membership in L by simulating the intera
tion between P

and V . The following de�nition identi�es those proof systems for whi
h this lower

bound on the prover's 
omplexity is tight.

De�nition 1.22 ([BG94℄). An intera
tive proof system (P; V ) for a language L

is 
ompetitive if the prover strategy P 
an be 
omputed in probabilisti
 polynomial

time given a membership ora
le for L.

Whi
h problems have 
ompetitive intera
tive proofs? Satisfiability (and

hen
e every NP-
omplete problem) has a 
ompetitive intera
tive proof, by the

well-known fa
t that using an ora
le for de
iding SAT, one 
an a
tually �nd sat-

isfying assignments in polynomial time. The Graph Nonisomorphism proof sys-

tem (Proto
ol 1.5) is also 
ompetitive, as the prover strategy amounts to de
iding

Graph Isomorphism. With a little more work, it 
an be veri�ed that the prover

in Proto
ol 1.9 
an be implemented using a #P-ora
le, and hen
e #P-
omplete

problems have 
ompetitive intera
tive proofs. Finally, it follows from one of the ex-

er
ises that PSPACE-
omplete problems also have 
ompetitive intera
tive proofs.

However, it is unlikely that all problems in IP have 
ompetitive intera
tive proofs:

Theorem 1.23 ([BG94℄). If nondeterministi
 double-exponential time is not 
on-

tained in probabilisti
 double-exponential time, then there is a problem in NP whi
h

has no 
ompetitive intera
tive proof.

There are a 
ouple of intriguing open problems involving 
ompetitive intera
tive

proofs.

Open Problem 1.24. Do 
o-NP-
omplete problems have 
ompetitive intera
tive

proofs?

The best upper bound known on the 
omplexity of a prover for 
o-NP is #P,

as in Proto
ol 1.9.

Open Problem 1.25. Does Graph Nonisomorphism have a publi
-
oin 
om-

petitive intera
tive proof? More generally, are there any problems for whi
h publi
-


oin intera
tive proofs require provers with greater 
omplexity than private-
oin in-

tera
tive proofs?

Re
all that there is a transformation whi
h 
onverts private-
oin intera
tive

proofs to publi
-
oin ones (Theorem 1.20), but that transformation does not pre-

serve the prover's 
omplexity (and no \bla
k box" transformation 
an [Vad00℄).

1.5. Exer
ises

Exer
ise 1 (The veri�er's randomness is essential). Show that the 
lass of lan-

guages possessing intera
tive proofs with a deterministi
 veri�er is simply NP.

Exer
ise 2 (The prover's randomness is inessential). Show that every language hav-

ing an intera
tive proof has one with a deterministi
 prover.



12 SALIL VADHAN, PROBABILISTIC PROOF SYSTEMS | PART I

Exer
ise 3 (Upper-bounding the power of intera
tion). Convin
e yourself that IP �

PSPACE. (Hint: What is the 
omplexity of 
omputing the deterministi
 prover

strategy you 
onstru
ted in Problem 2?)

Exer
ise 4 (Soundness of Graph Nonisomorphism intera
tive pf). Show that if

G

0

= ([n℄; E

0

) and G

1

= ([n℄; E

1

) are isomorphi
 graphs, then �(G

0

) and �(G

1

)

are identi
ally distributed when � is a uniformly 
hosen permutation of the vertex

set [n℄.

Exer
ise 5 (Publi
-
oin lower bound proto
ol*). A family H of fun
tions map-

pingX to Y is 
alled pairwise independent if when we 
hoose h uniformly at random

from H, the following two 
onditions hold:

� For all x 2 X , h(x) is distributed uniformly in in Y .

� For all x

1

6= x

2

2 X , h(x

1

) and h(x

2

) are independent.

(EÆ
iently 
omputable pairwise independent families mapping f0; 1g

n

to f0; 1g

m

exist, e.g., the set of fun
tions of the form h

A;b

(x) = Ax + b where A is an m � n

0{1 matrix, b 2 f0; 1g

m

, and all arithmeti
 is modulo 2.)

1. Let H be a pairwise independent family of fun
tions mapping X to Y , let

S � X , and let y be any �xed element of Y . Show that

(a) If jSj � Æ � jY j, then Pr

h H

[9x 2 S s.t. h(x) = y℄ � Æ

(b) If jSj � (1=Æ) � jY j, then Pr

h H

[9x 2 S s.t. h(x) = y℄ � 1� Æ. (Hint:

Use Cheby
hev's Inequality.)

2. An automorphism of a graph is an isomorphism with itself. A graph is rigid

if it has no automorphisms other than the identity. Use Part (1) to 
onstru
t

a publi
-
oin intera
tive proof for the language of rigid graphs. (Hint: Let

S be the set of 100-tuples of graphs that are isomorphi
 to the input graph.)

Solution Sket
hes

Solution 1. A trans
ript of an intera
tion in whi
h the veri�er a

epts 
onstitutes

an NP proof. Note that the validity of su
h a trans
ript (i.e., 
onsisten
y with the

veri�er's algorithm) 
an be 
he
ked in poly time.

Solution 2. An \optimal" prover 
omputes ea
h message to maximize the a

ep-

tan
e probability of the veri�er given the trans
ript of the intera
tion so far. This

strategy is deterministi
.

Solution 3. We need to show that the maximum possible a

eptan
e probability

p(t) of the veri�er given the trans
ript t of the intera
tion so far 
an be 
omputed

in PSPACE. This 
an be done re
ursively: If the next move is the prover's, then

p(t) = max

m

p(t Æm) (where we take the maximum over prover messages m). If

the next move is the veri�er's, then p(t) =

P

m

q

t;m

� p(t Æ m), where q

t;m

is the

probability that the veri�er's next message is m given that the trans
ript so far is

t. Note that q

t;m


an be 
omputed by enumerating over all the veri�er's 
oin tosses

(and dis
arding those that are not 
onsistent with t.).

Solution 4. Let � be su
h that �(G

0

) = G

1

. Then for every graph H , the map

� 7! � Æ � is a bije
tion between the set of permutations taking G

1

to H and those

taking G

0

to H . ( �(G

1

) = H , �(�(G

0

)) = H .)

Solution 5.
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1. (a) This is just a union bound | ea
h x 2 S has probability 1=jY j of

mapping to y, so the probability that any of them maps to y is at

most jSj � (1=jY j) � Æ.

(b) This is an appli
ation of Cheby
hev. De�ne indi
ators I

x

for the 
on-

dition h(x) = y. We are interested in the probability (over the 
hoi
e

of h) of the event that the sum M =

P

x2S

I

x

is greater than 0. Ea
h

I

x

has expe
tation 1=jY j, so

E

[M ℄ = jSj�(1=jY j). Ea
h I

x

has varian
e

(1 � 1=jY j) � (1=jY j) < 1=jY j. Sin
e they are pairwise independent,

Var[M ℄ � jSj � (1=jY j). Hen
e, by Cheby
hev's Inequality,

Pr[M = 0℄ � Pr[jM �

E

[M ℄j �

E

[M ℄℄ �

Var[M ℄

E

[M ℄

2

�

jY j

jSj

� Æ:

2. The number of graphs isomorphi
 to G equals n! divided by the number of

automorphisms of G, in
luding the identity. (The number of permutations

taking G to any H isomorphi
 to G is exa
tly the number of automorphisms

of G.) Hen
e, if G has no automorphisms other than the identity then there

are n! graphs isomorphi
 to G, and if G has at least 1 automorphism other

than the identity then there are at most n!=2 isomorphi
 to G. Taking

100-tuples ampli�es the gap to 2

100

, and we get the following proof system:

The Veri�er randomly 
hooses a hash fun
tion h mapping to f0; 1g

`

for

` � log

2

(n!=2

50

). The Prover is then supposed to return a 100-tuple of

graphs (G

1

; G

2

; : : : ; G

100

) isomorphi
 to G su
h that h(G

1

; : : : ; G

100

) = 0

`

.

To prove that these 100 graphs are isomorphi
 to G, the prover also sends

the 
orresponding isomorphisms. Completeness and soundness follow from

the argument above and Part (1).





LECTURE 2

Zero-Knowledge Proofs

Given the importan
e of proofs in mathemati
s and 
omputer s
ien
e, it is

natural to ask \What does one learn from a proof?" By de�nition, upon verifying

a proof, one should be 
onvin
ed that the assertion being proven is true. But a

proof 
an a
tually reveal mu
h more than that. Indeed, proofs in mathemati
s are

often valued for providing insight in addition to validating a parti
ular theorem.

And, at a minimum, it seems inherent in 
lassi
al proofs that after verifying a

proof, one leaves not just with 
on�den
e that the assertion is true, but also with

the ability to present the same proof to others and 
onvin
e them of the assertion.

Intera
tive proofs, however, are not bound by the same limitations as 
lassi
al

proofs. We will see below that it is possible for an intera
tive proof to be zero

knowledge, with the veri�er learning nothing other than than the validity of the

assertion being proven. In parti
ular, after verifying su
h a proof, one does gain

the ability to 
onvin
e someone else of the same statement!

2.1. De�nition

It is remarkable that the zero-knowledge property 
an even be de�ned in a mean-

ingful and realizable manner. This is a

omplished by the simulation paradigm:

we say that veri�er has learned nothing from its intera
tion with the prover if the

veri�er 
an \simulate" its view of the intera
tion on its own. That is, there should

be an eÆ
ient probabilisti
 algorithm, 
alled a simulator, whose output distribution

is indistinguishable from what the veri�er sees when intera
ting with the prover.

Intuitively, this means that the veri�er learns nothing sin
e it 
an run the simulator

instead of intera
ting with the prover.

De�nition 2.1 (view of an intera
tive proto
ol). Let (A;B) be an intera
tive pro-

to
ol. B's view of (A;B) on 
ommon input x is the random variable hA;Bi(x) =

(m

1

; : : : ;m

t

; r) 
onsisting of all the messages m

1

; : : : ;m

t

ex
hanged between A and

B together with the string r of random bits that B has read during the intera
tion.

1

De�nition 2.2 (zero-knowledge proofs [GMR89℄).

An intera
tive proof system (P; V ) for a language L is said to be zero knowledge if

1

It may seem unnatural that our notation is asymmetri
 in that it does not allow for indi
ating

A's view of the proto
ol. However, in these le
tures, we will only be interested in B's view (as B


orresponds to the veri�er in an intera
tive proof), and thus we have opted for a simpler notation

at the expense of generality.

15
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for every probabilisti
 polynomial-time V

�

, there exists a probabilisti
 polynomial-

time simulator S su
h that

fS(x)g

x2L

and fhP; V

�

i(x)g

x2L

are 
omputationally indistinguishable.

2

That is, for every (nonuniform) polynomial-

time algorithm D, there is a negligible

3

fun
tion � su
h that for all x 2 L,

jPr [D(x; S(x)) = 1℄� Pr [D(x; hP; V

�

i(x)) = 1℄j � �(jxj):

Note that the simulation is only required to be a

urate on inputs x 2 L;

that is, when the assertion being proven is true. We wanted the de�nition to


apture the fa
t that the veri�er should learn nothing from the \proof" (whi
h is

now a
tually the strategy for P ). For inputs x =2 L, there is no \
orre
t" proof

(as guaranteed by soundness), so it would be somewhat strange to require that

the veri�er learns nothing in this 
ase. From a 
ryptographi
 point of view, this

asymmetry 
orresponds to the idea that we only wish to prote
t parties that are

behaving honestly; a prover that is trying to prove a false assertion is 
ertainly not.

Another important point about the above de�nition is that we require the

zero-knowledge property to hold even if the veri�er follows a strategy V

�

that

deviates from the spe
i�ed proto
ol (provided it is still polynomial time). Clearly,

this feature is 
ru
ial in 
ryptographi
 appli
ations. (Though \honest-veri�er zero

knowledge," in whi
h a simulator is only required for the spe
i�ed veri�er strategy,

is already nontrivial and of 
omplexity-theoreti
 interest.)

2.2. Zero-knowledge Proofs for NP

De�nition 2.2 beautifully 
aptures the intuitive notion of \learning nothing," but

of 
ourse, the question remains whether nontrivial zero-knowledge proofs exist.

Remarkably, every problem having a 
lassi
al proof also has a zero-knowledge proof.

Theorem 2.3 ([GMW91℄). Every language in NP has a zero-knowledge proof

(assuming one-way fun
tions

4

exist).

With this theorem, zero-knowledge proofs gain vast appli
ability in 
ryptogra-

phy, where it often arises that one party wishes to 
onvin
e others of some \NP

assertion" without leaking unne
essary information. For example, zero-knowledge

proofs 
an be used to make proto
ols robust against 
heating parties: parti
ipants

in the proto
ol 
an prove to ea
h other that their a
tions are 
onsistent with the

spe
i�ed proto
ol without 
omprising any of their \se
ret" information (e.g., their

en
ryption keys) [Yao86, GMW87℄. They 
an also be used to 
onstru
t \iden-

ti�
ation s
hemes," whereby one party 
an \prove" her identity to others without

leaking any information that 
an later be used to impersonate her [FFS88℄.

To prove Theorem 2.3, it suÆ
es to give a zero-knowledge proof for a single

NP-
omplete problem. We will use Graph 3-Coloring. A 3-
oloring of a graph

G = ([n℄; E) is an assignment C : [n℄ ! fR;G;Bg (for \Red," \Green," and

2

See Oded Goldrei
h's le
ture notes in this volume for a detailed dis
ussion of 
omputational

indistinguishability. The de�nition we need di�ers from the one there in two main respe
ts: the

ensembles are indexed by strings in a language rather than all natural numbers, and we allow the

distinguisher to be nonuniform (i.e., a 
ir
uit).

3

A fun
tion � : N ! [0; 1℄ is negligible if for every (positive) polynomial p, �(n) � 1=p(n) for all

suÆ
iently large n.

4

See the le
ture notes of Goldrei
h in this volume for the de�nition of one-way fun
tions
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\Blue") su
h that no pair of adja
ent verti
es are assigned the same 
olor. Graph

3-Coloring is the language

3COL = fG : G is 3-
olorableg ;

and it is known to be NP-
omplete (
f., [Pap94℄).

2.2.1. A \Physi
al" Proto
ol

The zero-knowledge proof for Graph 3-Coloring is based on the observation

that the 
lassi
al proof 
an be broken into \pie
es" and randomized in su
h a way

that (a) the entire proof is valid if and only if every pie
e is valid, yet (b) ea
h

pie
e reveals nothing on its own. For Graph 3-Coloring, the 
lassi
al proof is

a three-
oloring of the graph, and the pie
es are the restri
tion of the 
oloring to

the individual edges: (a) An assigment of 
olors to verti
es of the graph is a proper

3-
oloring if and only if the endpoints of every edge have distin
t 
olors, yet (b) if

the three 
olors are randomly permuted, then the 
olors assigned to the endpoints

of any parti
ular edge are merely a random pair of distin
t 
olors and hen
e reveal

nothing.

In Proto
ol 2.4, we show how to use the above observations to obtain a zero-

knowledge proof for Graph 3-Coloring whi
h makes use of \physi
al" imple-

ments | namely opaque, lo
kable boxes. We will later obtain the �nal proof system

by using an appropriate \digital" (i.e., mathemati
al) primitive whi
h emulates the

properties of opaque boxes used.

Proto
ol 2.4: \Physi
al" Proof System (P; V ) for Graph

3-Coloring

Input: A graph G = ([n℄; E)

1. P : Let C be any 
anoni
al 3-
oloring of G (e.g., the lexi
ograph-

i
ally �rst one). Let � be a uniformly sele
ted permutation of

fR;G;Bg. Let C

0

= � Æ C.

2. P : For every vertex v 2 [n℄, pla
e C

0

(v) inside a box B

v

, lo
k

the box using a key K

v

, and send the box B

v

to V .

3. V : Uniformly sele
t an edge (x; y) 2 E and send (x; y) to P .

4. P : Send the keys K

x

and K

y

to V .

5. V : Unlo
k the boxes B

x

and B

y

, and a

ept if the 
olors inside

are di�erent.

We now explain why this proto
ol works. The following \proof" should only be

taken as motivation for the �nal proto
ol, and the reader should not be disturbed by

ambiguities resulting from the fa
t that we haven't pre
isely de�ned this \physi
al"

model.

\Proposition" 2.5. Proto
ol 2.4 is a \zero-knowledge proof" for 3COL.

\Proof". For 
ompleteness, �rst observe that if C is a proper 3-
oloring of G then

so is C

0

. Thus, no matter whi
h edge (x; y) 2 E the veri�er sele
ts, the 
olors C

0

(x)

and C

0

(y) inside boxes B

x

and B

y

will be di�erent. Therefore, the veri�er a

epts

with probability 1 when G 2 3COL.
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For soundness, 
onsider the 
olors inside the boxes sent by the prover in Step 2

as assigning a 
olor to ea
h vertex of G. If G is not 3-
olorable, then it must be

the 
ase that for some (x; y) 2 E, B

x

and B

y


ontain the same 
olor. So the

veri�er will reje
t with probability at least 1=jEj. By repeating the proto
ol jEj+1

times, the probability that the veri�er a

epts on G =2 3COL will be redu
ed to

(1� 1=jEj)

jEj+1

< 1=3.

To argue that Proto
ol 2.4 is \zero knowledge," let's 
onsider what a veri�er

\sees" in an exe
ution of the proto
ol (when the graph is 3-
olorable). The veri�er

sees n boxes fB

v

g, all of whi
h are lo
ked and opaque, ex
ept for a pair B

x

, B

y


orresponding to an edge in G. For that pair, the keys K

x

and K

y

are given and

the 
olors C

0

(x) and C

0

(y) are revealed. Of all this, only C

0

(x) and C

0

(y) 
an

potentially leak knowledge to the veri�er. However, sin
e the 
oloring is randomly

permuted by �, C

0

(x) and C

0

(y) are simply a (uniformly) random pair of distin
t


olors from fR;G;Bg, and 
learly this is something the veri�er 
an generate on its

own.

In this intuitive argument, we have reasoned as if the veri�er sele
ts the edge

(x; y) in advan
e, or at least independently of the permutation �. This would

of 
ourse be true if the veri�er follows the spe
i�ed proto
ol and sele
ts the edge

randomly, but the de�nition of zero knowledge requires that we also 
onsider 
heat-

ing veri�er strategies whose edge sele
tion may depend on the messages previously

re
eived from the prover (i.e., the 
olle
tion of boxes). However, the perfe
t opaque-

ness of the boxes guarantees that the veri�er has no information about their 
on-

tents, so we 
an indeed view (x; y) as being sele
ted in advan
e by the veri�er, prior

to re
eiving any messages from the prover.

2.2.2. The \Digital" Proto
ol

In order to obtain a \digital" (i.e., mathemati
al) zero-knowledge proof for Graph

3-Coloring, we will repla
e the opaque boxes with a 
ryptographi
 primitive that

retains the essential features of the boxes: We should be able \lo
k" obje
ts (i.e.,

strings) into \boxes" (again, strings) in su
h a way that:

1. The lo
ked box 
ompletely hides the obje
t lo
ked within it (to maintain

the zero-knowledge property).

2. A \key" to open a box and verify its 
ontents 
an be given (to implement

Step 4).

3. The 
ontents of a lo
ked box 
annot be 
hanged (to maintain soundness).

The following de�nition 
aptures the above three properties.

De�nition 2.6 (
ommitment s
hemes | simpli�ed)). A 
ommitment s
heme is a

polynomial-time algorithm Commit whi
h takes a messagem and a (random) key K

and produ
es a 
ommitment B = Commit(m;K). For a given m, the distribution

of B over a uniformly 
hosen key K 2 f0; 1g

k

is denoted Commit

k

(m). Commit

must satisfy the following properties:

1. (unambiguity) For any m 6= m

0

, the set of 
ommitments to m is disjoint

from the set of 
ommitments to m

0

. That is, there do not exist K, K

0

su
h

that Commit(m;K) = Commit(m;K

0

).

2. (se
re
y) For any m;m

0

, 
ommitments to m and m

0

are 
omputationally in-

distinguishable. That is, for every (nonuniform) polynomial-time algorithm
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D, there is a negligible fun
tion � su
h that

jPr [D(Commit

k

(m)) = 1℄� Pr [D(Commit

k

(m

0

))℄j � �(k):

Note that a 
ommitment B 
an indeed be \opened" by providing the 
or-

responding message m and key K, and this 
an be veri�ed by 
he
king that

B = Commit(m;K).

Commitment s
hemes meeting the above de�nition 
an be 
onstru
t from any

one-way permutation

5

(exer
ise). There is a more general de�nition of 
ommitment

s
hemes whi
h allows intera
tion (
f., [Gol00℄), and 
ommitment s
hemes meeting

the more general de�nition exist if and only if one-way fun
tions exist [HILL99,

Nao91℄.

Repla
ing the boxes in Proto
ol 2.4 with a 
ommitment s
heme yields the

\digital" zero-knowledge proof for Graph 3-Coloring given in Proto
ol 2.7.

Proto
ol 2.7: \Digital" Proof System (P; V ) for Graph

3-Coloring

Input: A graph G = ([n℄; E)

1. P : Let C be any 
anoni
al 3-
oloring of G (e.g., the lexi
ograph-

i
ally �rst one). Let � be a uniformly sele
ted permutation of

fR;G;Bg. Let C

0

= � Æ C.

2. P : For every vertex v 2 [n℄, 
hoose K

v

uniformly in f0; 1g

n

, let

B

v

= Commit(C

0

(v);K

v

), and send B

v

to V .

3. V : Uniformly sele
t an edge (x; y) 2 E and send (x; y) to P .

4. P : Send K

x

, K

y

, C

0

(x), and C

0

(y) to V .

5. V : A

ept if B

x

= Commit(C

0

(x);K

x

) and B

y

=

Commit(C

0

(y);K

y

), and C

0

(x) 6= C

0

(y).

2.2.3. Proof of Corre
tness

We now prove the 
orre
tness of Proto
ol 2.7, establishing Theorem 2.3.

6

Proposition 2.8. Proto
ol 2.7 is a zero-knowledge proof system for Graph 3-

Coloring.

Proof. Completeness and soundness are proved as they were for \Proposition" 2.5,

using the unambiguity property of 
ommitment s
hemes to establish soundness.

The zero-knowledge property follows the same intuition as in the physi
al pro-

to
ol | all the veri�er sees is a random pair of distin
t 
olors, together with the

unopened 
ommitments. A random pair of distin
t 
olors is something the veri�er


an generate on its own, and the se
re
y property of the 
ommitment s
heme should

imply that the veri�er learns nothing from the unopened 
ommitments. Based on

this intuition, it is straightforward to simulate the veri�er's view when the veri�er

follows the spe
i�ed proto
ol: the simulator 
an randomly sele
t an edge (x; y) 2 E,

5

One-way permutations are the same obje
ts referred to as \one-to-one one-way fun
tions" in

Goldrei
h's le
ture notes.

6

Ex
ept for the fa
t that we assume the existen
e of a 
ommitment s
heme in the simpli�ed sense

of De�nition 2.6, and this is apparently stronger than assuming the existen
e of one-way fun
tions.
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onstru
t B

x

and B

y

as 
ommitments to a random pair of distin
t 
olors, and 
on-

stru
t the remaining 
ommitments as 
ommitments to arbitrary 
olors (sin
e they

need not be opened).

However, for 
heating veri�ers, this setting presents an additional subtlety not

present in the physi
al proto
ol. Unlike boxes, 
ommitments do not always \look

the same" | they vary as a fun
tion of their 
ontents and the key. A 
heating

veri�er 
an sele
t the edge (x; y) in a way that depends on the 
ommitment. Thus,

unlike the physi
al setting, the simulator 
annot determine in advan
e whi
h edge

(x; y) the veri�er will sele
t and then pla
e a random pair of distin
t 
olors in B

x

and B

y

. Instead, the simulator will randomly \guess" whi
h edge the 
heating

veri�er will sele
t, and later 
he
k this by running the veri�er algorithm. We will

argue that the simulator su

eeds with noti
eable probability (� 1=jEj), and hen
e

polynomially many trials will yield su

ess with all but negligible probability. A

simulator S

V

�

(for a 
heating veri�er V

�

) designed a

ording to this intuition is

given in Algorithm 2.9.

Algorithm 2.9: Simulator S

V

�

for Proto
ol 2.7

Input: A graph G = ([n℄; E), and a 
heating veri�er algorithm V

�

1. Uniformly sele
t an edge (x; y) 2 E.

2. De�ne a 
oloring C

0

: [n℄ ! fR;G;Bg as follows: Sele
t

(C

0

(x); C

0

(y)) uniformly among the distin
t pairs from fR;G;Bg,

and for v =2 fx; yg, set C

0

(v) = R.

3. For every v 2 V , 
hoose K

v

uniformly in f0; 1g

n

and let B

v

=

Commit(C

0

(v);K

v

).

4. Run V

�

to determine whi
h edge (x

�

; y

�

) it would sele
t when

sent all the B

v

's. That is, uniformly sele
t 
oin tosses r for V

�

and let (x

�

; y

�

) = V

�

(G; fB

v

g; r).

5. If (x

�

; y

�

) 6= (x; y), output fail. Otherwise, output

(fB

v

g

v2V

; (x; y); (K

x

;K

y

; C

0

(x); C

0

(y)); r).

Claim 2.10. For any probabilisti
 polynomial-time V

�

, there is a negligible fun
-

tion � su
h that on any input G = ([n℄; E),

1. S

V

�

(G) su

eeds with probability at least 1=jEj � �(n).

2. The output distribution of S

V

�

(G), 
onditioned on su

ess, is 
omputation-

ally indistinguishable from hP; V

�

i(G).

In order to prove Claim 2.10, it will be 
onvenient to 
onsider a modi�
ation

of the distribution hP; V

�

i(G) that in
orporates a failure probability:

Distribution hP; V

�

i

f

(G): Choose (x; y) uniformly from E. Sample view =

(fB

v

g

v2V

; (x

�

; y

�

); (K

x

�

;K

y

�

; C

0

(x

�

); C

0

(y

�

)); r) a

ording to hP; V

�

i(G). If

(x

�

; y

�

) 6= (x; y), output fail. Otherwise, output view.

hP; V

�

i

f

(G) su

eeds with probability exa
tly 1=jEj (sin
e (x; y) is indepen-

dent of (x

�

; y

�

)), and 
onditioned on su

ess, its output distribution is identi
al

to hP; V

�

i(G). Thus, Claim 2.10 is redu
ed to showing that S

V

�

(G) is 
omputa-

tionally indistinguishable from hP; V

�

i

f

(G). We will prove this using the se
re
y
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property of the 
ommitment s
heme. More pre
isely, we will argue that if S

V

�

(G)


ould be distinguished from hP; V

�

i

f

(G), then the following two distributions would

be distinguishable.

Distribution RRR: Output 3n independent 
ommitments to R.

Distribution RGB: Output n independent 
ommitments to R, followed by n

independent 
ommitments to B, followed by n independent 
ommitments to

G.

(Above, all 
ommitments are using uniformly sele
ted keys of length n, i.e., Commit

n

(�).)

Distributions RRR and RGB are 
omputationally indistinguishable by the se
re
y

of the 
ommitment s
heme and a \hybrid argument" (
f., the le
ture notes of Oded

Goldrei
h in this volume).

To perform the desired redu
tion, we will give a (nonuniform) polynomial-time

algorithm T whi
h \transforms" Distributions RRR and RGB into S

V

�

(G) and

hP; V

�

i

f

(G), respe
tively. Thus T 
an be used to transform a distinguisher between

the latter pair of distributions into a distinguisher between the former pair. T will

have the graph G = ([n℄; E) and the 
oloring C used by the prover \hardwired in";

this is why we need it to be nonuniform.

Algorithm 2.11: Transforming Algorithm T

Input: A sequen
e of 3n 
ommitments

(B

R

1

; B

R

2

; : : : ; B

R

n

; B

G

1

; : : : ; B

G

n

; B

B

1

; : : : ; B

B

n

)

Nonuniformity: A 3-
olorable graph G = ([n℄; E), a 3-
oloring C of

G, and a 
heating veri�er algorithm V

�

1. Uniformly sele
t an edge (x; y) 2 E.

2. Let � be a uniformly sele
ted permutation of fR;G;Bg. Let

C

0

= � Æ C.

3. Choose K

x

and K

y

uniformly in f0; 1g

n

. Let B

x

=

Commit(C

0

(x);K

x

), B

y

= Commit(C

0

(y);K

y

).

4. For v =2 fx; yg, Let B

v

= B

C

0

(v)

v

.

5. Uniformly sele
t 
oin tosses r for V

�

and let (x

�

; y

�

) =

V

�

(G; fB

v

g; r).

6. If (x

�

; y

�

) 6= (x; y), output fail. Otherwise, output

(fB

v

g

v2V

; (x; y); (K

x

;K

y

; C

0

(x); C

0

(y)); r).

The transforming algorithm T is given in Algorithm 2.11. It 
an be veri�ed by

inspe
tion that when T is fed Distribution RGB, its output distribution is exa
tly

hP; V

�

i

f

(G). On the other hand, when T is fed Distribution RRR, its output

distribution is identi
al to that of the simulator S

V

�

(G) (sin
e when C is a proper

3-
oloring, C

0

(x) and C

0

(y) are indeed a random pair of distin
t 
olors). This proves

that S

V

�

(G)

is 
omputationally indistinguishable from hP; V

�

i

f

(G), whi
h in turn

establishes Claim 2.10 and Proposition 2.8.
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2.2.4. Remarks

A few remarks about the proofs of Theorem 2.3 and Proposition 2.8 are in or-

der. First, although the de�nition of intera
tive proofs allows a 
omputationally

unbounded prover, the strategy of the prover in Proto
ol 2.7 
an a
tually be im-

plemented in polynomial time when given an NP witness (i.e., a 3-
oloring of the

graph). This property is 
ru
ial in 
ryptographi
 appli
ations of zero-knowledge

proofs, where we typi
ally want the 
omputations required of all parties to be

eÆ
ient (though we may wish for se
urity against 
omputationally unbounded ad-

versaries).

The simulation is another pla
e in whi
h the proof gives something stronger

than required by the de�nition. The de�nition only requires that for every veri-

�er strategy V

�

, there exists a simulator. However, Algorithm 2.9 gives a single

\universal" simulator S whi
h works for all veri�er strategies V

�

, using this ver-

i�er strategy only as a \bla
k box." That is, the simulator only requires a

ess

to the input-output behavior of V

�

, and not the program whi
h 
omputes it. All

known zero-knowledge proofs are demonstrated 
orre
t using su
h universal bla
k-

box simulation, and it is diÆ
ult to imagine how one would prove the zero-knowledge

property in any other way. On the other hand, there are several limitations on the

eÆ
ien
y of bla
k-box zero-knowledge proofs that are not known to hold for the

general de�nition, so there is some motivation to seek alternatives to this paradigm.

We also remark on the use of NP-
ompleteness in the proof of Theorem 2.3.

NP-
ompleteness results are most often thought of as \negative" statements, as

they give eviden
e of a problem's intra
tability. Here, however, we have used NP-


ompleteness in a \positive" way | to redu
e the task of proving something about

all of NP to the task of proving something about a single NP-
omplete problem,

namely Graph 3-Coloring. (There was a similar positive use of 
ompleteness in

the proofs of Theorems 1.6 and 1.11.)

Finally, we mention a result showing that the seemingly strong zero-knowledge


ondition a
tually does not limit the expressive power of intera
tive proofs at all:

Theorem 2.12 ([IY87, BGG

+

88℄). Every problem in IP has a zero-knowledge

proof (assuming one-way fun
tions exist).

While it is a substantial strengthening of Theorem 2.3 from a 
omplexity-

theoreti
 viewpoint, Theorem 2.12 does not yield mu
h more utility for 
rypto-

graphi
 proto
ols. The reason is that the 
ru
ial property guaranteed by the proof

of Theorem 2.3 | that the prover 
an be implemented in polynomial time given

an NP witness | 
annot be extended to Theorem 2.12 for this property does not

even make sense for problems outside NP.

2.3. Additional Topi
s

2.3.1. Composition of Zero-Knowledge Proofs

When presenting the Graph 3-Coloring proof system above, we 
avalierly said

\repeat the proto
ol several times to redu
e the error probability." While it is true

that repetitions do work for redu
ing the error probability, their e�e
t on the zero-

knowledge property is more subtle. To explain the issue in more detail, we need to

be more pre
ise about what we mean by \repetitions." Two natural interpretations

are:
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Sequential Composition: The k exe
utions of the proof system are per-

formed one after another. So if the original proof system has message 
om-

plexity m, the new proof system has message 
omplexity km.

Parallel Composition: The k exe
utions of the proof system are 
arried out

all at on
e, \in lo
k step." That is, the message 
omplexity of the proof

system remains the same, and ea
h message of the new proof system 
onsists

of a k-tuple of messages in the original proof system.

Of these two, the zero-knowledge property is only preserved under sequential


omposition, and even that requires a modi�
ation of De�nition 2.2 to allow the ver-

i�er an \auxiliary input" (to model the veri�er's state after prior intera
tions) (
f.,

[FS90, GO94, GK96b℄). The fa
t that zero knowledge is not 
losed under parallel


omposition makes it diÆ
ult to 
onstru
t zero-knowledge proofs whi
h simultane-

ously have low message 
omplexity and negligible error probability. Furthermore,

there are inherent limitations on 
onstru
ting su
h zero-knowledge proofs, at least

using bla
k-box simulation:

Theorem 2.13 ([GK96b℄). Only problems in BPP have 3-message bla
k-box sim-

ulation zero-knowledge proofs with negligible error probabilities (in the 
ompleteness

and soundness 
onditions). For publi
-
oin proofs, the same result holds for any


onstant message 
omplexity.

Still, using private 
oins and a stronger 
omplexity assumption, it is known

how to 
onstru
t 
onstant-message zero-knowledge proofs.

Theorem 2.14 ([GK96a℄). If a family of \
law-free permutations" exists, then

NP has 5-message zero-knowledge proofs.

Re
ently, mu
h attention has fo
used on the behavior of the zero-knowledge

property under more general, \adversarial" forms of repetition to model situations

that 
an arise in 
ryptographi
 appli
ations. One obje
t of study along these lines

has been 
on
urrent zero knowledge [DNS98℄, whi
h asks for proto
ols whose zero-

knowledge property is preserved even when many of them are exe
uted at the

same time and the veri�er 
an adversarially determine how the steps of the various

proto
ols are interleaved. Su
h a situation 
ould arise, for example, when zero-

knowledge proofs are being employed in a distributed environment su
h as the

Internet. An even stronger requirement that has been studied is resettable zero

knowledge [CGGM00℄, whi
h asks that the zero-knowledge property be preserved

even if the veri�er 
an for
e the prover to exe
ute the proto
ol many times using

the same 
oin tosses. This might be a realisti
 atta
k on physi
al implementations

of zero-knowledge proofs, where the prover is implemented on, say, a smart 
ard.

Given that standard zero-knowledge proofs are not 
losed under even parallel


omposition, it is not surprising that the 
onstru
tion of message-eÆ
ient 
on
ur-

rent and resettable zero-knowledge proofs is quite diÆ
ult. To over
ome these

diÆ
ulties, some resear
hers have 
onsidered augmenting the model of intera
-

tion with additional features su
h as \timing" or \publi
 keys" [DNS98, Dam99,

CGGM00℄. Other resear
hers have investigated these notions in the standard in-

tera
tive model, attempting to determine the minimal message 
omplexity needed

for NP to have 
on
urrent or resettable zero-knowledge proofs. While there has

been 
onsiderable progress, at the time of these le
tures there is still a signi�-


ant gap between the known upper bounds [RK99, CGGM00, KP00℄ and lower

bounds [KPR98, Ros00℄ (whi
h are stronger than those given by Theorem 2.13).
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2.3.2. Perfe
t and Statisti
al Zero Knowledge

The de�nition of zero-knowledge proofs (De�nition 2.2) requires the simulator's

output to be 
omputationally indistinguishable from the veri�er's view of the in-

tera
tion. Here, we will 
onsider two \information-theoreti
" strengthenings of this

requirement:

Perfe
t zero knowledge: The simulator's output distribution is identi
al to

the veri�er's view of the intera
tion.

Statisti
al zero knowledge: The simulator's output distribution is statisti-


ally 
lose to the veri�er's view. More pre
isely, their statisti
al di�eren
e

7

is bounded by a negligible fun
tion of the input length.

The 
lass of languages possessing statisti
al (resp., perfe
t) zero-knowledge

proofs is denoted SZK (resp., PZK). For 
ontrast, zero-knowledge proofs in the

sense of De�nition 2.2 are often referred to as 
omputational zero knowledge and

the 
lass of languages possessing them is denoted CZK. Clearly, PZK � SZK �

CZK.

Statisti
al and perfe
t zero-knowledge proofs provide mu
h stronger \se
urity"

guarantees than 
omputational ones, in that the zero-knowledge 
ondition is mean-

ingful even for veri�ers with unbounded 
omputational power. Surprisingly, these

stronger requirements 
an be met, and perfe
t zero-knowledge proofs are known

to exist for a number of nontrivial problems of 
omplexity-theoreti
 and 
ryp-

tographi
 interest: Quadrati
 Residuosity and Nonresiduosity [GMR89℄,

Graph Isomorphism and Nonisomorphism [GMW91℄, the Dis
rete Loga-

rithm problem [GK93℄, and approximate versions of the Shortest Ve
tor and

Closest Ve
tor problems in latti
es [GG00℄.

Despite 
ontaining these problems believed to be hard, there are are also strong

upper bounds on the 
omplexity of SZK:

Theorem 2.15 ([For89, AH91℄). SZK � AM \ 
o-AM.

By Theorem 1.17, this means that it is unlikely that SZK 
ontains NP-hard

problems. This puts SZK in an intriguing region in 
omplexity theory | lying

somewhere between the tra
table problems (i.e., BPP) and the NP-hard ones.

This is striking 
ontrast to CZK whi
h equals PSPACE if one-way fun
tions

exist (by Theorems 1.11 and 2.12).

Re
ently, there has been substantial progress in improving our understanding

of statisti
al zero knowledge. Here, we mention two results whi
h have shed more

light on the the 
omplexity of the 
lass SZK.

Theorem 2.16 ([Oka00℄).

8

SZK is 
losed under 
omplement.

This result is surprising be
ause of the asymmetri
 de�nition of SZK. There is

no a priori reason to believe that if one 
an prove that a statement is true in zero

knowledge then one should also be able to prove that it is false in zero knowledge;

this is similar to the intuition that underlies our belief that NP 6= 
o-NP. In

7

The statisti
al di�eren
e between two probability distributions X and Y on a set D is

max

S�D

jPr [X 2 S℄� Pr [Y 2 S℄j.

8

Theorems 2.16 and 2.17 were a
tually proven for the 
lass of problems possessing \honest-veri�er"

statisti
al zero-knowledge proofs, but it has been shown that every honest-veri�er statisti
al

zero-knowledge proof 
an be transformed into a general (i.e., 
heating-veri�er) statisti
al zero-

knowledge proof [GSV98℄. Also, the 
omplete problems referred to in Theorem 2.17 are not

languages, but \promise problems" (de
ision problems in whi
h some inputs are \ex
luded").
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Figure 1. Relation of PZK, SZK, and CZK to other 
omplexity 
lasses

(assuming one-way fun
tions exist). Lines indi
ate left-to-right in
lusion.

fa
t, IP and CZK are also 
losed under 
omplement (assuming one-way fun
tions

exist for CZK), but those are a trivial 
onsequen
es of the more dramati
 results

showing that they are equal to PSPACE (Thms. 1.11 and 2.12).

Theorem 2.17 ([SV97, GV99℄).

8

SZK has two 
omplete problems, 
alled Sta-

tisti
al Differen
e and Entropy Differen
e. (These problems essentially

amount to approximating the statisti
al di�eren
e or the di�eren
e in entropies be-

tween two distributions spe
i�ed by algorithms (
ir
uits) whi
h sample from them.)

These problems give a 
hara
terization of SZK that makes no referen
e to

intera
tion or zero knowledge, and provide further eviden
e that SZK 
aptures a

ri
h and natural 
lass of 
omputational problems. Furthermore, they have proven

to be very useful for obtaining general results about SZK, as they redu
e questions

about the entire 
lass to ones about a single problem. Thus, we see more \positive"

uses of 
ompleteness in this area.

There are many open problems regarding statisti
al zero knowledge (
f., [Vad99℄),

but here we just mention two.

Open Problem 2.18. Does SZK = PZK?

Open Problem 2.19. Find a 
omplete problem for SZK that is 
ombinatorial or

number-theoreti
 (rather than statisti
al) in nature.

2.4. Exer
ises

Exer
ise 1 (Commitment s
hemes). Constru
t a 
ommitment s
heme from any

one-way permutation (whi
h 
annot be inverted by polynomial-sized 
ir
uits).

9

Exer
ise 2 (Honest-veri�er zero knowledge). An honest-veri�er zero-knowledge proof

is one in whi
h the simulation 
ondition is only required to hold for the spe
i�ed

veri�er V (rather than all polynomial-time veri�ers V

�

).

1. Show that the intera
tive proof for Graph Nonisomorphism given in le
-

ture is honest-veri�er (perfe
t) zero knowledge.

2. Constru
t a similar honest-veri�er perfe
t zero-knowledge proof system for

Quadrati
 Nonresiduosity, i.e., the language

QNR = f(n; x) : there is no y su
h that y

2

= x (mod n)g:

9

The key-length in your 
onstru
tion may depend on the message length, although te
hni
ally

De�nition 2.6 does not allow su
h a dependen
e. (This dependen
y 
an be removed using a

pseudorandom generator, as de�ned in the le
ture notes of Goldrei
h in this volume.)
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Exer
ise 3 (Perfe
t zero knowledge). Exhibit a perfe
t zero-knowledge proof for

Quadrati
 Residuosity, i.e., the 
omplement of Quadrati
 Nonresiduosity

from Problem 2. (You should exhibit a simulator even for 
heating veri�ers. The

simulation may fail with probability, say, 1=2, as long as its output distribution is


orre
t 
onditioned on non-failure.)

Exer
ise 4 (Resettable zero knowledge). Informally, a zero-knowledge proof is re-

settable if it remains zero knowledge even when the veri�er 
an for
e the prover to

use the same 
oin tosses in polynomially many intera
tions. Find a zero-knowledge

proof whi
h is not resettable (under a reasonable 
omplexity assumption).

Solution Sket
hes

Solution 1. Let B be a hard-
ore predi
ate for a one-way permutation f . To


ommit to a bit b, 
hoose x at random and output (f(x); B(x) � b). Unambiguity

follows be
ause f is one-to-one. And se
re
y follows from the fa
t that (f(x); B(x))

is indistinguishable from uniform and hen
e also from (f(x); B(x) � 1). (See the


onstru
tion of pseudorandom generators whi
h stret
h by 1 bit in Goldrei
h's

le
ture notes.) To 
ommit to a long message m, apply this 
ommitment s
heme to

ea
h bit ofm (using independently 
hosen x's for ea
h bit). The indistinguishability

of Commit(m) and Commit(m

0

) for all m, m

0

follows from a hybrid argument

redu
ing to se
re
y of the 1-bit 
ommitment s
heme. (The redu
tion will need to

have the messages m;m

0

hardwired in; this is why we need to work with 
ir
uits

rather than uniform adversaries.)

Solution 2. For Graph Nonisomorphism, the simulator just mimi
s the veri�er

and produ
es a trans
ript in whi
h the prover answers 
orre
tly (whi
h happens

w.p. 1 in the real intera
tion on YES instan
es). The proof system for Quadrati


Nonresiduosity is as follows: the veri�er 
hooses a random r 2 Z

�

n

and 
ips a


oin b 2 f0; 1g. If b = 0, she sends the prover r

2

and if b = 1, she sends the prover

x �r

2

. The prover must guess b. When x is a quadrati
 nonresidue, the distributions

r

2

and xr

2

are disjoint; otherwise, they are identi
al. The analysis pro
eeds as for

Graph Nonisomorphism.

Solution 3. On input (n; x), the prover sends the veri�er a random square s mod-

ulo n, and then the veri�er asks the prover to return a square root of either s

or sx; the prover 
hooses one of the possible square roots at random. If x is a

square, this will always be possible. If x is a nonsquare, at most 1 of x; sx has a

square root, so the veri�er will reje
t with probability at least 1=2. The simulator


hooses r uniformly in Z

�

n

, randomly guesses the veri�er's 
hallenge, and a

ord-

ingly sends either s = r

2

or s = r

2

=x as the prover's message. It then runs the

veri�er V

�

to �nd out whether it guessed the 
hallenge 
orre
tly. If yes, it uses r

as the prover's last message. If not (whi
h happens w.p. 1/2), it fails. It 
an be

veri�ed that 
onditioned on non-failure, the output distribution is identi
al to the

real intera
tion.

Solution 4. The proof system for Graph 3-Coloring given in le
ture is an ex-

ample. By making the prover run n with the same 
oin tosses and querying an edge

tou
hing a new vertex ea
h time, the veri�er 
an learn a 3-
oloring of the graph.

Hen
e this 
annot be simulated in poly-time unless NP � BPP.



SUGGESTIONS FOR FURTHER READING

These le
tures were not intended to be 
omprehensive surveys of the areas 
overed.

The \additional topi
s" se
tions in parti
ular were designed to give a small sample

of re
ent resear
h dire
tions and open problems, and are largely a re
e
tion of the

author's own interests. Here we mention some pla
es where the interested reader


an learn more about this area.

[Gol99, Ch. 2℄ 
ontains a broad survey of probabilisti
 proof systems, in
luding

variants of intera
tive and zero-knowledge proofs not treated in these le
tures. More

details of proof that IP = PSPACE (Thm. 1.11) 
an be found in [Sip97, 10.4℄.

An entertaining a

ount of the ideas leading up to that theorem 
an be found in

[Bab90℄. Zero-knowledge proofs are 
overed in great depth and detail in [Gol00,

Ch. 4℄. A uni�ed treatment of the re
ent work on statisti
al zero knowledge 
an

be found in [Vad99℄.
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