
Chapter 12

Recurrences I

This is the first of two lectures about solving recurrences and recurrent problems. Need-
less to say, recurrent problems come up again and again. In particular, recurrences often
arise in the analysis of recursive algorithms.

12.1 The Towers of Hanoi

In the Towers of Hanoi problem, there are three posts and seven disks of different sizes.
Each disk has a hole through the center so that it fits on a post. At the start, all seven disks
are on post #1 as shown below. The disks are arranged by size so that the smallest is on
top and the largest is on the bottom. The goal is to end up with all seven disks in the same
order, but on a different post. This is not trivial because of two restrictions. First, the only
permitted action is removing the top disk from a post and dropping it onto another post.
Second, a larger disk can never lie above a smaller disk on any post. (These rules imply,
for example, that it is no fair to pick up the whole stack of disks at once and then to drop
them all on another post!)

Post #1 Post #2 Post #3

It is not immediately clear that a solution to this problem exists; maybe the rules are so
stringent that the disks cannot all be moved to another post!

144 Recurrences I

One approach to this problem is to consider a simpler variant with only three disks.
We can quickly exhaust the possibilities of this simpler puzzle and find a 7-move solution
such as the one shown below. (The disks on each post are indicated by the numbers
immediately to the right. Larger numbers correspond to larger disks.)

1
2
3

⇒ 2
3 1

⇒
3 1 2

⇒ 1
3 2

⇒ 1
3 2

⇒
1 3 2

⇒ 2
1 3

⇒
1
2
3

This problem was invented in 1883 by the French mathematician Edouard Lucas. In his
original account, there were 64 disks of solid gold. At the beginning of time, all 64 were
placed on a single post, and monks were assigned the task of moving them to another post
according to the rules described above. According to legend, when the monks complete
their task, the Tower will crumble and the world will end!

The questions we must answer are, “Given sufficient time, can the monks succeed?”
and if so, “How long until the world ends?” and, most importantly, “Will this happen
before the 6.042 final?”

12.1.1 Finding a Recurrence

The Towers of Hanoi problem can be solved recursively as follows. Let Tn be the min-
imum number of steps needed to move an n-disk tower from one post to another. For
example, a bit of experimentation shows that T1 = 1 and T2 = 3. For 3 disks, the solution
given above proves that T3 ≤ 7. We can generalize the approach used for 3 disks to the
following recursive algorithm for n disks.

Step 1. Move the top n− 1 disks from the first post to the third post. This can be done in
Tn−1 steps.

1
2
...
n

⇒

1
2
...

n n−1

Recurrences I 145

Step 2. Move the largest disk from the first post to the to the second post. This requires
just 1 step.

1
2
...

n n−1

⇒

1
2
...

n n−1

Step 3. Move the n− 1 disks from the third post onto the second post. Again, Tn−1 steps
are required.

1
2
...

n n−1

⇒

1
2
...
n

This algorithm shows that Tn, the number of steps required to move n disks to a dif-
ferent post, is at most 2Tn−1 + 1. We can use this fact to compute upper bounds on the
number of steps required for various numbers of disks:

T3 ≤ 2 · T2 + 1

= 7

T4 ≤ 2 · T3 + 1

≤ 15

The algorithm described above answers our first question: given sufficient time, the
monks will finish their task and end the world. (Which is a shame. After all that effort
they’d probably want to smack a few high-fives and go out for burgers and ice cream, but
nope— world’s over.)

12.1.2 A Lower Bound for Towers of Hanoi

We can not yet compute the exact number of steps that the monks need to move the 64
disks; we can only show an upper bound. Perhaps— having pondered the problem since
the beginning of time— the monks have devised a better algorithm.

In fact, there is no better algorithm, and here is why. At some step, the monks must
move the n-th disk from the first post to a different post. For this to happen, the n − 1
smaller disks must all be stacked out of the way on the only remaining post. Arranging
the n − 1 smaller disks this way requires at least Tn−1 moves. After the largest disk is
moved, at least another Tn−1 moves are required to pile the n− 1 smaller disks on top.

146 Recurrences I

This argument shows that the number of steps required is at least 2Tn−1 + 1. Since we
gave an algorithm using exactly that number of steps, we now have a recurrence for Tn,
the number of moves required to complete the Tower of Hanoi problem with n disks:

T1 = 1

Tn = 2Tn−1 + 1 (for n ≥ 2)

We can use this recurrence to conclude that T2 = 3, T3 = 7, T4 = 15,

12.1.3 Guess-and-Verify

Computing T64 from the recurrence would require a lot of work. It would be nice to
have a closed form expression for Tn, so that we could quickly compute the number of
steps required to solve the Towers of Hanoi problem for any given number of disks. (For
example, we might want to know how much sooner the world would end if the monks
melted down one disk to purchase burgers and ice cream before the end of the world.)

There are several different methods for solving recurrences. The simplest method is to
guess the solution and then to verify that the guess is correct, usually with an induction
proof. This method is called guess-and-verify or “substitution”. As a basis for a good
guess, let’s tabulate Tn for small values of n:

n Tn

1 1
2 3
3 7
4 15
5 31
6 63

Based on this table, a natural guess is that Tn = 2n − 1.

Whenever you guess a solution to a recurrence, you should always verify it with a
proof by induction or by some other technique; after all, your guess might be wrong. (But
why bother to verify in this case? After all, if we’re wrong, its not the end of the. . . no,
let’s check.)

Claim. If:

T1 = 1

Tn = 2Tn−1 + 1 (for n ≥ 2)

then:
Tn = 2n − 1

Recurrences I 147

Proof. The proof is by induction on n. Let P (n) be the proposition that Tn = 2n − 1.

Base case: P (1) is true because T1 = 1 = 21 − 1.

Inductive step: Now we assume Tn = 2n − 1 to prove that Tn+1 = 2n+1 − 1, where n ≥ 1.

Tn+1 = 2Tn + 1

= 2(2n − 1) + 1

= 2n+1 − 1

The first equality is the recurrence relation, and the second equation follows by the as-
sumption P (n). The last step is simplification.

Our guess is now verified. This shows, for example, that the 7-disk puzzle will require
27 − 1 = 127 moves to complete. We can also now resolve our remaining questions about
the 64-disk puzzle. Since T64 = 264 − 1, the monks must complete more than 18 billion
billion steps before the world ends. Better study for the final.

12.1.4 The Plug-and-Chug Method

In general, guess-and-verify is a great way to solve recurrences. The only problem with
the method is guessing the right solution. This was easy in the Towers of Hanoi example,
but sometimes the solution has a strange form that is quite hard to guess. Practice helps,
of course, but so can some other methods.

Plug-and-chug is one such alternative method for solving recurrences. Plug-and-chug
is also sometimes called “expansion”, “iteration”, or “brute force”. The method consists
of four calculation-intensive steps. These are described below and illustrated with the
Tower of Hanoi examle.

Step 1: Plug and Chug

Expand the recurrence equation by alternately “plugging” (applying the recurrence equa-
tion) and “chugging” (simplifying the resulting expression).

Tn = 1 + 2Tn−1

= 1 + 2(1 + 2Tn−2) plug
= 1 + 2 + 4Tn−2 chug
= 1 + 2 + 4(1 + 2Tn−3) plug
= 1 + 2 + 4 + 8Tn−3 chug
= 1 + 2 + 4 + 8(1 + 2Tn−4) plug
= 1 + 2 + 4 + 8 + 16Tn−4 chug

148 Recurrences I

Be careful in the “chug” stage; too much simplification can obscure an emerging pat-
tern. For example, summing 1 + 2 + 4 + . . . at every stage would have concealed the
geometric series. The rule to remember— indeed, a rule applicable to the whole of col-
lege life— is chug in moderation.

Step 2: Identify and Verify a Pattern

Identify a pattern for the recurrence equation after i rounds of plugging and chugging.
Verify that this pattern is correct by carrying out one additional round of plug and chug.
In the Towers of Hanoi example, a strong pattern emerges: Tn is always a sum of consec-
utive powers of two together with an earlier T term:

Tn = 1 + 2 + 4 + . . . + 2i−1 + 2iTn−i

We do one last round of plug-and-chug to confirm that the pattern is correct. This is
amounts to the inductive step of a proof that we have the right general form.

Tn = 1 + 2 + 4 + . . . + 2i−1 + 2i(1 + 2Tn−(i+1)) plug

= 1 + 2 + 4 + . . . + 2i−1 + 2i + 2i+1Tn−(i+1) chug

Step 3: Express n-th Term Using Early Terms

Substitute a value of i into the pattern so that Tn is expressed as a function of just the base
cases. Substitute values for these terms to obtain an ordinary, non-recurrent expression
for Tn. For the Towers of Hanoi recurrence, substituting i = n − 1 into the general form
determined in Step 2 gives:

Tn = 1 + 2 + 4 + . . . + 2n−2 + 2n−1T1

= 1 + 2 + 4 + . . . + 2n−2 + 2n−1

The second step uses the base case T1 = 1. Now we have an ordinary, non-recurrent
expression for Tn.

Step 4: Find a Closed Form for the n-th Term

All that remains is to reduce the ordinary expression for Tn to a closed form. We are
fortunate in this case, because Tn is the sum of a geometric series. We learned how to
tackle these last week!

Tn = 1 + 2 + 4 + 8 + . . . + 2n−2 + 2n−1

=
n−1∑
i=0

2i

= 2n − 1

We’re done! When using plug-and-chug method, you might want to verify your solution
with induction. It is easy to make a mistake when observing the general pattern.

Recurrences I 149

12.2 Merge Sort

There are many algorithms for sorting a list of n items; in fact, you will see about dozen
of them in 6.046. One of the most popular sorting algorithms is Merge Sort.

12.2.1 The Algorithm

Here is how Merge Sort works. The input is a list of n ≥ 1 items x1, x2, . . . , xn. If n = 1,
then the algorithm returns the single item x1. If n > 1, then the original list is broken into
two lists, x1, . . . , xn/2 and xn/2+1, . . . , xn. Both of these lists are sorted recursively, and then
they are merged to form a complete, sorted list of the original n items.

Let’s work through an example. Suppose we want to sort this list:

10, 7, 23, 5, 2, 4, 3, 9

Since there is more than one item, we divide into two lists; one is 10, 7, 23, 5, and the other
is 2, 4, 3, 9. Each list is sorted recursively. The results are:

5, 7, 10, 23

2, 3, 4, 9

Now we must merge these two small sorted lists into one big sorted list. We start with
an empty big list and add one item at a time. At each step, we compare the first items in
the small lists. We move the smaller of these two to the end of the big list. This process
repeats until one of the small lists becomes empty. At that point, the remaining small list
is appended to the big list and we are done. For the example, the contents of the three
lists after each step are shown in the table below. The next items to move are underlined.

small list #1 small list #2 big list
5, 7, 10, 23 2, 3, 4, 9
5, 7, 10, 23 3, 4, 9 2
5, 7, 10, 23 4, 9 2, 3
5, 7, 10, 23 9 2, 3, 4
7, 10, 23 9 2, 3, 4, 5
10, 23 9 2, 3, 4, 5, 7
10, 23 2, 3, 4, 5, 7, 9

2, 3, 4, 5, 7, 9, 10, 23

Because we keep dividing up the original list recursively until only 1 item remains, all
the work is in the merging!

150 Recurrences I

12.2.2 Finding a Recurrence

In the analysis of a sorting algorithm, a traditional question is, “What is the maximum
number comparisons used in sorting n items?” The number of comparisons is taken as
an estimate of the running time. In the case of Merge Sort, we can find a recurrence for
this quantity. Solving this recurrence will allow us to study the asymptotic behavior of
the algorithm.

To make the analysis easier, assume for now that the number of items we are sorting
is a power of 2. This ensures that we can divide the original list of items exactly in half at
every stage of the recursion.

Let T (n) be the maximum number of comparisons used by Merge Sort in sorting a list
of n items. If there is only one item, then no comparisons are required, so T (1) = 0. If
n > 1, then T (n) is the sum of:

• The number of comparisions used in sorting both halves of the list, which is at most
2T (n/2).

• The number of comparisons used in merging two lists of length n. This is at most
n−1 because one item is appended to the big list after each comparison, and at least
one additional item is appended to the big list in the final step when one small list
becomes empty. Since the big list eventually contains n items, there can be at most
n− 1 comparisons. (There might be fewer comparisons if one small list empties out
quickly, but we are analyzing the worst case.)

Therefore, the number of comparisons required to sort n items is at most:

T (n) = 2T (n/2) + n− 1

12.2.3 Solving the Recurrence

Now we need a closed form for the number of comparisons used by Merge Sort in sorting
a list of n items. This requires solving the recurrence:

T (1) = 0

T (n) = 2T (n/2) + n− 1 (for n > 1)

Let’s first compute a few terms and try to apply guess-and-verify:

n T (n)
1 0
2 1
4 5
8 17
16 49

There is no obvious pattern. We could compute more values and look harder, but let’s try
our other method, plug-and-chug.

Recurrences I 151

Step 1: Plug and Chug

First, we alternately plug and chug until a pattern emerges:

T (n) = n− 1 + 2T (n/2)

= (n− 1) + 2(n/2− 1 + 2T (n/4)) plug
= (n− 1) + (n− 2) + 4T (n/4) chug
= (n− 1) + (n− 2) + 4(n/4− 1 + 2T (n/8)) plug
= (n− 1) + (n− 2) + (n− 4) + 8T (n/8) chug
= (n− 1) + (n− 2) + (n− 4) + 8(n/8− 1 + 2T (n/16)) plug
= (n− 1) + (n− 2) + (n− 4) + (n− 8) + 16T (n/16) chug

Note that too much simplification would have obscured the pattern that has now emerged.

Step 2: Identify and Verify a Pattern

Now we identify the general pattern and do one more round of plug-and-chug to verify
that it is maintained:

T (n) = (n− 1) + (n− 2) + . . . + (n− 2i−1) + 2iT (n/2i)

= (n− 1) + (n− 2) + . . . + (n− 2i−1) + 2i(n/2i − 1 + 2T (n/2i+1)) plug

= (n− 1) + (n− 2) + . . . + (n− 2i−1) + (n− 2i) + 2i+1T (n/2i+1) chug

Step 3: Express n-th Term Using Early Terms

Now we substitute a value for i into the pattern so that T (n) depends on only base cases.
A natural choice is i = log n, since then T (n/2i) = T (1). This substitution makes T (n)
dependent only on T (1), which we know is 0.

T (n) = (n− 1) + (n− 2) + . . . + (n− 2log(n)−1) + 2log nT (n/2log n)

= (n− 1) + (n− 2) + . . . + (n− n/2) + nT (1)

= (n− 1) + (n− 2) + . . . + (n− n/2)

Step 4: Find a Closed-Form for the n-th Term

Now we have an ordinary, non-recurrent expression for T (n). We can reduce this to a
closed form by summing a series.

T (n) = (n− 1) + (n− 2) + . . . + (n− n/2)

= n log n− (1 + 2 + 4 + . . . + n/2)

= n log n− n + 1

∼ n log n

152 Recurrences I

What a weird answer— no one would ever guess that!1 As a check, we can verify that
the formula gives the same values for T (n) that we computed earlier:

n n log2 n− n + 1
1 1 log2 1− 1 + 1 = 0
2 2 log2 2− 2 + 1 = 1
4 4 log2 4− 4 + 1 = 5
8 8 log2 8− 8 + 1 = 17
16 16 log2 16− 16 + 1 = 49

The values match! If we wanted certainty, we could verify this solution with an induction
proof.

12.3 More Recurrences

Let’s compare the Tower of Hanoi and Merge Sort recurrences.

Hanoi T (n) = 2T (n− 1) + 1 ⇒ T (n) ∼ 2n

Merge Sort T (n) = 2T (n/2) + (n− 1) ⇒ T (n) ∼ n log n

Though the recurrence equations are quite similar, the solutions are radically different!

At first glance each recurrence has one strength and one weakness. In particular, in the
Towers of Hanoi, we broke a problem of size n into two subproblem of size n−1 (which is
large), but needed only 1 additional step (which is small). In Merge Sort, we divided the
problem of size n into two subproblems of size n/2 (which is small), but needed (n − 1)
additional steps (which is large). Yet, Merge Sort is faster by a mile! The take-away point
is that generating smaller subproblems is far more important to algorithmic speed than
reducing the additional steps per recursive call.

12.3.1 A Speedy Algorithm

Let’s try one more recurrence. Suppose we have a speedy algorithm with the best proper-
ties of both earlier algorithms; that is, at each stage the problem is divided in half and we
do only one additional step. Then the run time is described by the following recurrence:

S(1) = 0

S(n) = 2S(n/2) + 1 (for n ≥ 2)

1Except for the couple people in lecture who actually did. Oh well.

Recurrences I 153

Let’s first try guess-and-verify. As usual, we tabulate a few values of S(n). As before,
assume that n is a power of two.

n S(n)
1 0
2 2S(1) + 1 = 1
4 2S(2) + 1 = 3
8 2S(4) + 1 = 7
16 2S(8) + 1 = 15

The obvious guess is that S(n) = n− 1. Let’s try to verify this.

Claim. Suppose:

S(1) = 0

S(n) = 2S(n/2) + 1 (for n ≥ 2)

If n is a power of 2, then:
S(n) = n− 1

Proof. The proof is by strong induction. Let P (n) be the proposition that if n is a power of
2, then S(n) = n− 1.

Base case: P (1) is true because S(1) = 1− 0 = 0.

Inductive step: Now assume P (1), . . . , P (n − 1) in order to prove that P (n), where n ≥ 2.
If n is not a power of 2, then P (n) is vacuously true. Otherwise, we can reason as follows:

S(n) = 2S(n/2) + 1

= 2(n/2− 1) + 1

= n− 1

The first equation is the recurrence. The second equality follows from assumption P (n/2),
and the last step is simplification only.

Thus, the running time of this speedy algorithm is S(n) ∼ n. This is better than the
T (n) ∼ n log n running time of Merge Sort, but only slightly so. This is consistent with
the idea that decreasing the number of additional steps per recursive call is much less
important than reducing the size of subproblems.

12.3.2 A Verification Problem

Sometimes verifying the solution to a recurrence using induction can be tricky. For ex-
ample, suppose that we take the recurrence equation from the speedy algorithm, but we
only try to prove that S(n) ≤ n. This is true, but the proof goes awry!

154 Recurrences I

Claim 75. If n is a power of two, then S(n) ≤ n.

Proof. (failed attempt) The proof is by strong induction. Let P (n) be the proposition that if
n is a power of two, then S(n) ≤ n.

Base case: P (1) is true because S(1) = 1− 0 < 1.

Inductive step: For n ≥ 2, assume P (1), P (2), . . ., P (n−1) to prove P (n). If n is not a power
of two, then P (n) is vacuously true. Otherwise, we have:

S(n) = 2S(n/2) + 1

≤ 2(n/2) + 1

= n + 1

6≤ n

The first equation is the recurrence. The second equality follows by the assumption
P (n/2). The third step is a simplification, and in the fourth step we crash and burn spec-
tacularly.

We know that the result is true, but the proof did not work! The natural temptation
is to ease up and try to prove something weaker, say S(n) ≤ 2n. Bad plan! Here’s what
would happen in the inductive step:

S(n) = 2S(n/2) + 1

≤ 2n + 1

6≤ 2n

We’re still stuck! As with other induction proofs, the key is to use a stronger induction
hypothesis such as S(n) = n− 1 (as above) or S(n) ≤ n− 1.

12.3.3 A False Proof

What happens if we try an even stronger induction hypothesis? Shouldn’t the proof work
out even more easily? For example, suppose our hypothesis is that S(n) ≤ n − 2. This
hypothesis is false, since we proved that S(n) = n − 1. But let’s see where the proof
breaks. Here again is the crux of the argument:

S(n) = 2S(n/2) + 1

≤ 2(n/2− 2) + 1

= n− 3

≤ n− 2

Something is wrong; we proved a false statement! The problem is that we were lazy and
did not write out the full proof; in particular, we ignored the base case. Since S(1) = 0 6≤
−1, the induction hypothesis is actually false in the base case. This is why we cannot
construct a valid proof with a “too strong” induction hypothesis.

Recurrences I 155

12.3.4 Altering the Number of Subproblems

Some variations of the Merge Sort recurrence have truly peculiar solutions! The main
difference in these variants is that we replace the constant 2 (arising because we create 2
subproblems) by a parameter a.

T (1) = 1

T (n) = aT (n/2) + n

Intuitively, a is the number of subproblems of size n/2 generated at each stage of the
algorithm; however, a is actually not required to be an integer. This recurrence can be
solved by plug-and-chug, but we’ll omit the details. The solution depends strongly on
the value of a:

T (n) ∼

2n

2− a
for 0 ≤ a < 2,

n log n for a = 2,

anlog a

a− 2
for a > 2.

The examples below show that the Merge Sort recurrence is extremely sensitive to the
multiplicative term, especially when it is near 2.

a = 1.99 ⇒ T (n) = Θ(n)

a = 2 ⇒ T (n) = Θ(n log n)

a = 2.01 ⇒ T (n) = Θ(n1.007...)

The constant 1.007 . . . is equal to log 2.01.

12.4 The Akra-Bazzi Method

The Merge Sort recurrence and all the variations we considered are called divide-and-
conquer recurrences because they arise all the time in the analysis of divide-and-conquer
algorithms. In general, a divide-and-conquer recurrence has the form:

T (x) =

is defined for 0 ≤ x ≤ x0

k∑
i=1

aiT (bix) + g(x) for x > x0

Here x is any nonnegative real number; it need not be a power of two or even an integer.
In addition, a1, . . . ak are positive constants, b1, . . . , bk are constants between 0 and 1, and
x0 is “large enough” to ensure that T (x) is well-defined. (This is a technical issue that
we’ll not go into in any greater depth.)

156 Recurrences I

This general form describes all recurrences in this lecture, except for the Towers of
Hanoi recurrence. (We’ll learn a method for solving that type of problem in the next
lecture.) Some hideous recurrences are also in the divide-and-conquer class. Here is an
example:

T (x) = 2T (x/2) + 8/9T (3x/4) + x2

In this case, k = 2, a1 = 2, a2 = 8/9, b1 = 1/2, b2 = 3/4, and g(x) = x2.

12.4.1 Solving Divide and Conquer Recurrences

A few years ago, two guys in Beirut named Akra and Bazzi discovered an elegant way to
solve all divide-and-conquer recurrences.

Theorem 76 (Akra-Bazzi, weak form). Suppose that:

T (x) =

is defined for 0 ≤ x ≤ x0

k∑
i=1

aiT (bix) + g(x) for x > x0

where:

• a1, . . . , ak are positive constants

• b1, . . . , bk are constants between 0 and 1

• x0 is “large enough” in a technical sense we leave unspecified

• |g′(x)| = O(xc) for some c ∈ N

Then:
T (x) = Θ

(
xp

(
1 +

∫ x

1

g(u)

up+1
du

))
where p satisfies the equation

∑k
i=1 aib

p
i = 1.

We won’t prove this here, but let’s apply the theorem to solve the nasty recurrence
from above:

T (x) = 2T (x/2) + 8/9T (3x/4) + x2

The first step is to find p, which is defined by the equation:

2

(
1

2

)p

+
8

9

(
3

4

)p

= 1

Equations of this form don’t always have closed-form solutions. But, in this case, the
solution is simple: p = 2. Next, we have to check that g′(x) does not grow too fast:

|g′(x)| = |2x| = O(x)

Recurrences I 157

Finally, we can compute the solution to the recurrence by integrating:

T (x) = Θ

(
x2

(
1 +

∫ x

1

u2

u3
du

))
= Θ

(
x2 (1 + log x)

)
= Θ(x2 log x)

The Akra-Bazzi method an be frustrating, because you do a lot of inexplicable inter-
mediate calculations and then the answer just pops out of an integral. However, it goes
through divide-and-conquer recurrences like a Weed Wacker.

Let’s try one more example. Suppose that the following recurrence holds for all suffi-
ciently large x:

T (x) = T (x/3) + T (x/4) + x

Here k = 2, a1 = 1, a2 = 1, b1 = 1/3, b2 = 1/4, and g(x) = x. Note that |g′(x)| = 1 = O(1),
so the Akra-Bazzi theorem applies. The next job is to compute p, which is defined by the
equation: (

1

3

)p

+

(
1

4

)p

= 1

We’re in trouble: there is no closed-form expression for p. But at least we can say p < 1,
and this turns out to be enough. Let’s plow ahead and see why. The Akra-Bazzi theorem
says:

T (x) = Θ

(
xp

(
1 +

∫ x

1

u

up+1
du

))
= Θ

(
xp

(
1 +

∫ x

1

u−p du

))
= Θ

(
xp

(
1 +

(
u1−p

1− p

∣∣∣∣x
u=1

)))
= Θ

(
xp

(
1 +

x1−p − 1

1− p

))
= Θ

(
xp +

x

1− p
− xp

1− p

)
= Θ (x)

In the last step, we use the fact that xp = o(x) since p < 1; in other words, the term
involving x dominates the terms involving xp, so we can ignore the latter. Overall, this
calculation show that we don’t need to know the exact value of p because it cancels out!

In recitation we’ll go over a slightly more general version of the Akra-Bazzi theorem.
This generalization says that small changes in the sizes of subproblems do not affect the
solution. This means that some apparent complications are actually irrelevant, which is
nice.

158 Recurrences I

